
DOI: https://doi.org/10.53555/nnms.v5i11.528 Publication URL: http://nnpub.org/index.php/MS/article/view/528 

 

ON FINITE DIMENSIONAL HILBERT SPACE FRAMES, DUAL AND 

NORMALIZED FRAMES AND PSEUDO- INVERSE OF THE FRAME 

OPERATOR. 

L. Njagi1*, B.M. Nzimbi2 and S.K. Moindi3 

*1Department of Mathematics, Meru University of Science and Technology, P.O. Box 972- 60200, Meru. 
2,3School of Mathematics, University of Nairobi, Chiromo Campus, P. O. Box 30197-00100, Nairobi. 

 

*Corresponding Author: - 

E-mail: lnjagi@must.ac.ke 

Abstract: - 
In this research paper we do an introduction to Hilbert space frames. We also discuss various frames in the Hilbert space. 

A frame is a generalization of a basis. It is useful, for example, in signal processing. It also allows us to expand Hilbert 

space vectors in terms of a set of other vectors that satisfy a certain condition. This condition guarantees that any vector 

in the Hilbert space can be reconstructed in a numerically stable way from its frame coefficients. Our focus will be on 

frames in finite dimensional spaces. 
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1.0 INTRODUCTION 

1.1 Hilbert Space 

We introduce some basic definitions and facts about Hilbert space. 

Definition 1. A Hilbert space is a complete, normed vector space H over the complex numbers 

ℂ, whose norm is induced by an inner product. The inner product is a function 

〈. , . 〉 ∶ 𝐻  ×   𝐻   →   ℂ, that satisfies: 

(a) Linearity in the second argument: ∀a, b ∈ ℂ and ∀x, y, z ∈𝐻, 

〈𝑥, 𝑎𝑦 + 𝑏𝑧〉 = 𝑎〈𝑥, 𝑦〉 +〈𝑥, 𝑧〉. 
 

(b) Conjugate symmetry: ∀x, y∈𝐻, 

 
where the overbar denotes complex conjugation. 

 

(c) Positivity: ∀x ≠ 0∈𝐻, 

〈𝑥, 𝑥〉 > 0. 

 

The norm of 𝐻 is induced by its inner product: ∀x ∈ 𝐻, ‖𝑥‖2 =  〈𝑥, 𝑥〉. The Hilbert space is required to be complete, which 

means that every sequence that is Cauchy with respect to this norm converges to a point in 𝐻. 

The most common Hilbert spaces, and the only ones we shall be concerned with in this article, are the Euclidean spaces 

and the square-integrable function spaces. 

 

Example 1. The Euclidean space ℂn is a Hilbert space with an inner product defined by 

 
 

The norm induced by this inner product is the standard Euclidean distance; for example, in ℂ2 we have 

 
 

We can generalize these Euclidean spaces to infinite dimensions. Our vectors are then functions instead of n-tuples of 

numbers, and we must introduce the additional requirement that the functions be square-integrable to ensure that the inner 

product is well defined. 

 

Example 2. For a measure space M and a measure µ, define L2(M, µ) to be the set of measurable functions f: M→ ℂ such 

that ∫ |f|2d µ < ∞. This is a Hilbert space with the inner product 

 
 

We shall take µ to be the Lebesgue measure when M is ℝ or an interval on ℝ, and counting measure when 𝑀 = N or 𝑀 = 

ℤ. 

In the first case, we use the notation L2([a, b]), and the Hilbert space consists of square- integrable functions. In the second 

case, we use a lowercase l and write l2(N). Recall that integration with respect to counting measure is just summation, so 

the inner product on l2 is 

 
and l2 is the space of square-summable sequences. 

Hilbert spaces are “nicer” than general Banach spaces because of the additional structure induced by the inner product. 

The inner product allows us to define “angles” between vectors, and in particular, leads to the concept of orthogonality: 

 

Definition 2. Two vectors x and y in a Hilbert space H are said to be orthogonal if 

〈𝑥, 𝑦〉 = 0. 

A set of vectors {xi} is said to be orthogonal if 〈𝑥𝑖 , 𝑥𝑗〉 = 0 for i ≠ j. 

In the Euclidean spaces, the inner product is the standard dot product, and two vectors are orthogonal if their dot product 

is zero. 

 

1.2 Linear Operators on Hilbert Space 

Operator here means a linear map between two Hilbert spaces. We introduce some basic terminologies regarding 

operators. 

 

Definition 3. For Hilbert spaces H1 and H2, mapping T: H1→H2, is called a linear operator if, for every x, y ∈𝐻1 and 

for every c1,c2 ∈ℂ, we have 

 
 

A linear operator is bounded if there exists a constant k > 0 such that ‖𝑇 𝑥‖  ≤ 𝑘 ‖𝑥‖for all nonzero x∈H1. If T is a bounded 
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operator, then we define the operator norm to be the norm induced by the two Hilbert space norms in the following way: 

‖𝑇‖ = inf{k:‖𝑇𝑥‖ ≤ k ‖𝑥‖for all x ≠ 0}. 

Every linear operator has an adjoint, which is the unique operator T∗ satisfying 

〈𝑇𝑥 , 𝑦〉= 〈𝑥, 𝑇∗𝑦〉, for all x, y ∈ H1. 

 

An linear operator is an injection if T x = T y ⇒ x = y (that is, if T maps distinct elements in H1 to distinct elements in 

H2). A linear operator is a surjection if range(T) = H2. An operator that is both surjective and injective is called a 

bijection. 

In the finite dimensional case, linear operators are just matrices; the linear operators from ℂn to ℂm are precisely the ℂm ×n 

matrices in ℂm×n. Infinite dimensional linear operators are the subject of functional analysis, and are much more difficult to 

classify in general. We will be working with a special type of linear operator called a “frame operator” whose norm is 

bounded above and below by two nonzero constants. 

 

2.0 𝒍2 Representations of L2 Functions 

A common task in applied mathematics is to represent a function f ∈ L2 in terms of some sequence of coefficients in l2. 

For example, in signal processing applications we often represent an analog signal (an L2 function) in terms of a sequence 

of coefficients. In theoretical considerations we may take these coefficients to be in l2, but in practice we can only store 

finitely many coefficients. We hope to be able to choose a finite set of coefficients that capture most of the “information” 

in the original signal, in the sense that we can use the coefficients to reconstruct the original signal with a small L2 error. 

The most common way to accomplish this task is to find a set of basis vectors {vn} for L2, and use the inner products 〈𝑣𝑛, 
𝑓 〉 as the l2 coefficients representing a function f ∈L2. 

 

Example 3. Consider the Hilbert space L2(0,1). The functions 

{e
2πinx

, n ∈ℤ} 

 

form an orthonormal basis for this space, and we can represent any function f ∈ L2 uniquely as a sequence in l2(ℤ) defined 

by 

cn = 〈𝑒2𝜋𝑖𝑛𝑥, 𝑓〉, n ∈ ℤ 

 

These cn are the “Fourier coefficients” of 𝑓. A function can be reconstructed from its Fourier coefficients using the 

inversion formula 

𝑓 = ∑𝑛∈ℤ 𝑐𝑛𝑒
2𝜋𝑖𝑛𝑥 

 

The map F that takes 𝑓 to its sequence of Fourier coefficients c is unitary. This means that the problem of forming c given 

f and the inverse problem of forming 𝑓 given c are both numerically stable, which is especially important in computational 

applications where we may only have an approximation to 𝑓 or c. The fact that the operator F is bounded above and below, 

guarantees that, given a sufficiently good approximation for 𝑓, we can form an approximation of c. 

It turns out that requiring the set {vn} to be a basis is overly restrictive for some applications. It is possible to form “stable 

representations” of arbitrary elements of H in terms of sets of vectors that are not necessarily linearly independent. The 

most general set of vectors that allows us to form stable representations of arbitrary vectors is called a “frame.” 

 

3.0 Hilbert Space Frames 

A frame is a subset {φj} of H that satisfies two very useful conditions: 

(i) Every other vector in H can be written as a linear combination of the φj. 

(ii) Every 𝑓 in H can be represented as a sequence of “frame coefficients” in l2, and each f can be reconstructed in a 

numerically stable way from its frame coefficients. 

The frame coefficients of a function f are determined by applying the “frame operator” to 𝑓. Reconstruction of 𝑓 from its 

frame coefficients is performed with a pseudoinverse. 

 

Definition 4. Let {φj} be a subset of H such that there exist∝, 𝛽 > 0 with 

∝ ‖𝑓‖2  ≤  ∑(𝜑𝑗 , f|)2  ≤ 𝛽‖𝑓‖2 

 

for all 𝑓∈ 𝐻. Then {φj} is called a frame of H. The supremum of all ∝ and the infimum of all 

𝛽 that satisfy the above inequality are called the frame bounds. 

The frame operator is the function F: 𝐻→l2 defined by 

(F𝑓)n = 〈𝜑𝑛, 𝑓〉. 
By definition, the frame operator satisfies 

∝ ‖𝑓‖2 ≤ ‖𝐹𝑓‖2 ≤ 𝛽 ‖𝑓‖2. 

If ∝ = 𝛽, then {φj} is called a tight frame. 
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Some basic facts follow immediately from this definition. 

(i) A frame must span the Hilbert space. Otherwise, F would have a non-trivial nullspace and there would be some f ≠0 

such that ‖𝐹𝑓‖2 = 0 < ∝ ‖𝑓‖2. 

(ii) The frame operator is an injection onto its range. If F f = F g, then by linearity F(f − g) = 0 and 

∝ ‖𝑓  − 𝑔‖2  ≤ 0 ≤ 𝛽 ‖𝑓  − 𝑔‖2 ⇒  ‖𝑓 − 𝑔‖ = 0 ⇒ f = g. 

 

(iii) A frame does not have to be orthogonal, or even linearly independent. 

 

Example 4. Let 𝐻 = ℂ2, and let . The columns of  are a frame of ℂn, and F: ℂ2 → ℂ3 is the 

associated frame operator. Its range in ℂ3 is the span of its columns, 

i.e., all vectors of the form , and F is a bijection from ℂ2 to this two-dimensional subspace of ℂ3. Its frame 

bounds will be the squares of the singular values of F, which are the square roots of the eigenvalues of 

Thus, ∝ = 1 and 𝛽 = 3. 

The obvious question is how a vector x ∈ ℂ2 can be reconstructed from its “frame coefficients” in ℂ3. It turns out that there 

is another set of vectors in ℂ 2, called the dual frame, that is used to reconstruct x from its coefficients. 

Before defining the dual frame, we compute the adjoint of the frame operator. 

 

Proposition 1. Let {φj} ⊂ H be a frame and let F be the associated frame operator. Then the 

adjoint of F is the operator F∗: l2 → H given by 

F∗c = ∑ 𝑐𝑗𝜑𝑗. 

Proof. By definition, the adjoint satisfies 

 
Using the conjugate symmetry and linearity of the inner product, this is 

= 〈𝑓, ∑ 𝑐𝑗𝜑𝑗〉 =  〈𝑓, 𝐹∗𝑐〉. 
The result follows. 

So, the adjoint of the frame operator takes a sequence c in l2 to a linear combination of the frame vectors weighted by the 

coefficients cj. 

 

3.1 The Dual Frame 

Definition 5. Dual Frames 

Let {𝜑j} be a frame in H. Then there is another frame {𝜑̃ j}⊂H, called the dual frame, given by: 

 
It is instructive to look at the equivalent expression 

𝜑j  = F∗F𝜑̃ j. 

F 𝜑̃ j  is the l2 sequence of “frame coefficients” of 𝜑̃ j in terms of the original frame; say F 𝜑̃ j  = �̃�. The adjoint F∗, when applied 

to this sequence of coefficients, gives 

F∗�̃� = ∑ �̃�𝜑𝑖 = 𝜑j 

 

So, we have written each of the original frame vectors φj as a linear combination of the other φi, and the coefficients of 

this expansion are the inner products of the φi with the dual frame vector 𝜑̃ j. 
We will see below that we can expand any vector 𝑓 ∈𝐻 as a linear combination of the φj, and the coefficients of this 

expansion will be given by the inner products of 𝑓 with the dual frame vectors 𝜑̃ j. On the other hand, we can write any 

vector f as a linear combination of the 𝜑̃ j, and then the coefficients will be given by the inner products of 𝑓 with the original 

frame. This is where the terminology “dual frame” comes from; reconstructing a vector from its frame coefficients and 

writing a vector as linear combination of frame vectors are in fact dual aspects of the same problem. 

 

Proposition 2. If F is a frame operator (with frame bounds 𝛼 and 𝛽), then F∗F is invertible; thus, the dual frame is well-

defined. 

Proof. 

(i) Let 𝑓 ∈𝐻 with 𝑓 ≠0. Then 

〈𝐹 ∗ 𝐹𝑓〉, fi= 〈𝐹𝑓, 𝐹𝑓〉= ‖𝐹𝑓‖2 ≥A ‖𝑓‖2 > 0. 

It follows that F∗F𝑓 ≠0, so F∗F is injective. 

 

(ii) The range of F∗F is closed. Suppose gn is some Cauchy sequence in the range of F∗F. That is, 

‖𝑔𝑛 − 𝑔𝑚‖→ 0 as n, m→∞ 
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and there is a sequence 𝑓n such that F∗F𝑓n = gn ∀n. For any n, m, 

〈𝐹∗𝐹 (𝑓𝑛 −  𝑓𝑚), (𝑓𝑛 −  𝑓𝑚)〉 = ‖𝐹 (𝑓𝑛 −  𝑓𝑚‖2 = ‖𝑔𝑛 −  𝑔𝑚‖2 ≥ 𝛼‖𝑓𝑛 −  𝑓𝑚‖2, 

since F is a frame with lower bound 𝛼 > 0. That means 

 

So  ‖𝑓𝑛 −  𝑓𝑚‖2 
→ 0  as n, m → ∞ and fn is a Cauchy sequence as well. Every Hilbert space is complete by definition, so 

𝑓n converges to some 𝑓 ∈𝐻. F∗F is a bounded linear map: the norm of an operator and its adjoint are the same, so  ‖𝐹 ∗ 

𝐹 ‖ ≤ ‖𝐹‖2 = 𝛽.  It follows that F∗F is continuous, and 

F∗F𝑓n = gn→F∗F𝑓 ≡ g ∈ range(F∗F). 

That is, any Cauchy sequence gn in range (F∗F) converges to some element g in range(F∗F), and range(F∗F) is closed. 

 

(iii). F∗F is a surjection, since 

 
 

where we have used the fact that F∗F is self-adjoint. 

Thus, F∗F is a bijection from 𝐻 to itself and for every g ∈𝐻, there is a unique f ∈H such that F∗F𝑓 = g. The inverse is the 

unique operator satisfying (F∗F)−1g = 𝑓. 

We are now in a position to show that the dual frame is indeed a frame of H, and compute its frame operator and frame 

bounds. 

 

Theorem 3. Suppose {φj} is a frame of a Hilbert space H, with associated frame operator �̃� and frame bounds 0 < 𝛼 ≤ 𝛽 < 

∞. Then the set is another frame of 𝐻, with frame operator  

 
Satisfying 

 
The set {𝜑̃ j} is called the dual frame associated with the original frame. 

 

Proof. 

If {𝜑̃ j} is to be a frame, then its frame operator is some 𝐹̃ satisfying : 

  is  the  bounded  inverse  of  a  bounded  self-adjoint operator, so it is self-adjoint, 

and 

(𝐹̃  𝑓)j = 〈𝜑𝑗,(𝐹∗ 𝐹)−1 𝑓〉. 

By definition of the frame operator F, this is the jth component of F (F∗F)−1. Thus, the dual frame operator is given by 

�̃�                              =F(F∗F)−1. 

To compute the frame bounds, we note that the inverse of a bounded self-adjoint operator is also self adjoint, so 𝐹̃∗ = 

(F∗F)−1F∗, and 

 

Let g = (F∗F)−1𝑓, so that 

 
Since F is a frame operator with bounds 𝛼 and 𝛽, 

𝛼‖𝑔‖2 ≤ ‖𝐹𝑔‖2  ≤ 𝛽 ‖𝐹𝑔‖2. 

 

Inserting g = (F∗F)−1𝑓 back into this inequality gives  

A‖(𝐹∗𝐹−1𝑓‖2 ≤ ‖𝑓‖2 ≤ ‖(𝐹∗𝐹)−1𝑓‖2, 

 

and rearranging, we have 

 
It follows that 
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Thus, {𝜑̃ j} is indeed a frame, with bounds  

 

Example 5. Let us return to Example 4, and compute the dual frame. We have a frame  of ℂ . The 

frame operator is  

 
and the frame bounds are 𝛼 = 1, 𝛽 = 3.  

The dual frame operator is 

 
 

so the dual frame is The bounds for the dual frame are   and  

Consider the vector Applying the operator F to it gives  

 
 

These are the coefficients of the expansion of x in terms of the dual frame vectors; that is, 

 

 

If we instead apply the dual frame operator to x, we find 

 
 

These are the coefficients of the expansion of x in terms of the original frame vectors: 

 
 

In general, the frame operator is not invertible, since it might not be surjective. However, in the example above, we were 

able to recover a vector x from its frame coefficients by writing it as a linear combination of the dual frame vectors; 

specifically, 

 

for any x, so the frame operator has a left inverse that inverts F on its range. This turns out to be true in general, and 

an analogous result allows us to recover a vector from its dual frame coefficients. 

 

Theorem 4. Pseudo-Inverse of the Frame Operator 

If F is a frame operator in a Hilbert space H and �̃� is the associated dual frame operator, then 

 

where  I  is  the  identity  operator  on  H.  That  is, and  F∗   are  left  inverses  for  F  and  𝐹̃ respectively. 

Proof. The dual frame operator is given by 

𝐹 = F(F∗F)−1. 

F∗F is a bounded, self-adjoint operator, so it is invertible and its inverse is self adjoint. Thus, 

 
It follows that 

 
Also, 

 

F∗𝐹̃  = F∗F(F∗F)−1 = I. Thus, for any frame {φj} and its associated dual frame  {𝜑̃ j  }, we have for each 𝑓 ∈H 
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When a frame is redundant (that is, F is not a surjection, or equivalently, the frame vectors are linearly dependent), 𝐹̃∗ is 

not a unique left inverse. We can add any arbitrary operator A that is zero on range(F) and still get a left inverse; if A: l2 

→H is a linear operator satisfying A (F 𝑓)= 0 for all 𝑓 ∈ H, then clearly (𝐹̃∗ + A)F 𝑓 = 𝐹̃∗F 𝑓 = 𝑓 for any 𝑓 ∈H. The pseudo-

inverse is chosen because it is zero on range(F)⊥, and so it is “optimal” in the sense that is the left inverse with the 

smallest possible norm. 

 

Theorem 5. “Optimality” of the Psuedo-Inverse 

If F is a frame operator on H and 𝐹̃  is the dual frame operator, then  is the left-inverse of F with minimum induced 

norm. That is, if F = TF = I, then 

 
Proof. First we show that range(F) is closed. Let cn = Ffn be a Cauchy sequence in range(F); that is, 

‖𝑓𝑛 −  𝑓𝑚‖2 → 0 as n, m→∞. 

From the frame inequality it follows that 

‖𝐹 (𝑓                    𝑛 − 𝑓𝑚‖2 = ‖𝑐𝑛 − 𝑐𝑚‖2  ≥ 𝛼 ‖𝑓𝑛 −  𝑓𝑚‖2 

so ‖𝑓𝑛 −  𝑓𝑚‖
2 

→0 as n, m→∞. Thus, fn  is a Cauchy sequence and it converges to some 𝑓∈H. F is bounded, so it is 

continuous, and F fn = cn → F 𝑓 = c for some c ∈ range(F), and range(F) is closed. 

Since range(F) is closed, we have 

l2 = range(F) ⊕ (range(F))⊥. 

Let c ∈l2 with c ≠ 0 and write c = c1 + c2 where c1 = F 𝑓 ∈ range(F) and c2 ∈ (range(F))⊥. Let T be an arbitrary left 

inverse of F. Then T and 𝐹̃∗ are equal on range(F), so 

 

Since c1⊥c2, ‖𝑐‖
2 

= ‖𝑐1‖
2 

+ ‖𝑐2‖
2 

and ‖𝑐‖ ≥ ‖𝑐‖, so 

 
Thus, 

 

and the pseudo-inverse 𝐹̃∗ is the left inverse of F with minimum sup norm. 

We have shown that the pseudo-inverse is the left inverse of minimum norm. If we know the lower frame bound 𝛼, then 

this norm is given by  . Having this bound on the pseudo-inverse is important for computational 

reasons; if  is not too large, then a vector can be reconstructed from its frame coefficients in a numerically stable way. 

Say we have a vector 𝑓∈ H whose frame coefficients are given by F 𝑓 = c. In practice, we will not have the exact frame 

coefficients,  but  some  perturbed  �̃� = c + δ  where  hopefully  ‖𝛿‖ ≪ 1.  Then the reconstructed vector will be

 and . Thus, small perterbations to the frame coefficients result in 

small perturbations of the reconstructed vector, 

as long as  is not too large. 

 

3.2 Tight Frames 

We have seen that in order to reconstruct a vector from its frame coefficients, we must have knowledge of the dual frame 

as well. For a special class of frames, this is no trouble, because the dual frame vectors are just constant multiples of the 

original frame vectors. 

 

Theorem 6. The Dual Frame of a Tight Frame 

A tight frame is a frame satisfying ‖𝐹𝑓‖2 = 𝛼 ‖𝑓‖2 for some 𝛼 > 0, and for every 𝑓 ∈ H. 

Let {φj} be a frame of H. Then {φj} is a tight frame with frame bound 𝛼 if and only if the dual frame is given by 

. 
Proof. 

Suppose {φj} is a tight frame. Then for any f ∈H, 

‖𝐹𝑓‖2 = 〈𝐹 ∗ 𝐹𝑓, 𝑓〉 = 𝛼‖𝑓‖2 = 𝛼 〈𝑓, 𝑓〉, 

and thus 

F∗F =AI 

where I is the identity operator on H. It follows that , and so . 
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Conversely, suppose we know that the dual frame satisfies . Then the associated 

frame operator satisfies , so F = 𝛼𝐹̃ . It follows from Theorem 4, then, that 

 
so for any 𝑓 ∈H, 

〈F ∗ 𝐹𝑓, 𝑓〉 = ‖𝐹𝑓‖2 = 𝛼〈𝑓, 𝑓〉 = 𝛼‖𝑓‖2 

 

and {φj} is a tight frame with frame bound 𝛼. 

 

Example 6. Any orthonormal basis is a tight frame with 𝛼 = 𝛽 =1. 

 

Example 7. In ℝ2, any set of 3 vectors that are equally distributed on the unit circle (meaning the angle between each of 

them is 120 degrees) will form a tight frame. For example, the set  

 

is a tight frame. To see this explicitly, note that for any in ℝ 2, we have 

 
 

3.3 Relationship between Frames and Bases 

A frame is a generalization of a basis. Clearly, in finite dimensions a frame is a basis if and only if it is linearly 

independent; that is, a frame in ℂn is a basis if and only if it consists of exactly n vectors. 

 

Definition 6. Normalized Frames 

Define a normalized frame to be a frame {φj} of a Hilbert space H such that ‖φj‖ =1 for all j . That is, a normalized frame 

consists of unit vectors. 

 

Theorem 7. Conditions for a Normalized Frame to be an Orthonormal Basis 

A normalized frame is an orthonormal basis if and only if 𝛼 = 𝛽 = 1. 

Proof. Suppose {vj}j∈J is an orthonormal basis of a Hilbert space H. Then for any u ∈ H, we have the basis expansion 

u = ∑𝑗∈𝐽〈𝑣𝑗 , 𝑢〉 vj. 

Since {vj} is an orthonormal basis, 〈𝑣𝑗 , 𝑣𝑖〉 = δij  for all i, j ∈ J. Thus,  

‖𝑢‖2 = 〈𝑢, 𝑢〉 = ∑𝑗∈𝐽〈𝑣𝑗, 𝑢〉 〈𝑢, 𝑣𝑗〉 = ∑𝑗 ∈𝐽|〈𝑣𝑗, 𝑢〉|2, 
 

and vj is a normalized frame with 𝛼 = 𝛽 = 1. 

Now suppose {φj}j∈J is a normalized frame with 𝛼 = 𝛽 = 1. Then for any 𝑓 ∈ H, 

‖𝑓‖2=∑𝑗∈𝐽|〈𝜑𝑗 , 𝑓〉|2. 
 

Then in particular, for any i, ‖𝜑𝑖‖
2 

= 1 = 1 + ∑𝑗≠𝑖|〈𝜑𝑗 + 𝜑𝑖〉|2, which implies |〈𝜑𝑗 , 𝜑𝑖〉| = δij so the frame vectors are 

orthonormal. To show that any vector can be expanded in terms of the frame vectors, consider the difference 

D = f − ∑𝑗 ∈𝐽〈𝜑𝑗 , 𝑓〉φj. 

This difference must satisfy 

‖𝑑‖2= ∑𝑗 ∈𝐽 |〈𝜑𝑗 , 𝑑〉|2 
= ∑𝑖 ∈𝐽 (|〈𝜑𝑖 , 𝑓 −  ∑𝑗 ∈𝐽 〈𝜑𝑗 , 𝑓〉𝜑𝑗〉|)2 

= ∑𝑖 ∈𝐽(|〈𝜑𝑖 , 𝑓〉 −  ∑𝑗 ∈𝐽 〈𝜑𝑗 , 𝑓〉〈𝜑𝑖 , 𝜑𝑗〉|)2. 

 

Since the φj are orthonormal, this is equal to 

∑𝑖 ∈𝐽 (|〈𝜑𝑖 , 𝑓 〉 −  𝜑𝑖 , 𝑓|)2 = 0. 

Thus, d=0 and 𝑓 = ∑𝑗 ∈𝐽 〈𝜑𝑗 , 𝑓 〉𝜑𝑗 .  It follows that {φj} constitutes an orthonormal basis. 

If a frame is not normalized, then the result of Theorem 20 does not hold. We can show this by constructing a frame of 

ℂ2 consisting of 3 vectors that has bounds 𝛼 = 𝛽 =1. 
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Example 8. To construct a frame of ℂ2 consisting of 3 vectors that satisfies A = B = 1, we must find a matrix in ℂ3×2 that has 

singular values σ1 = σ2 = 1. Such a matrix can be factored as USV, where U ∈ℂ3×3 and V ∈ ℂ2×2 are unitary and 

. For example, let 

 
And 

 
This gives 

 

So the set  is a tight frame of ℂ2 with 𝛼 = 𝛽 = 1. However, it is clearly not a basis. Theorem 7 is not 

violated because the frame vectors do not have unit length. 

 

3.4 Frames in Finite Dimensions 

We now consider frames in the finite dimensional Hilbert spaces ℂn. We give first a sufficient condition for a set of vectors 

to constitute a frame. 

Lemma 8. Any finite, spanning set in ℂn constitutes a frame. 

Proof. Suppose  and span({φj}) = ℂn. 

Define an operator F: ℂn → ℂm by (Fx)j = 〈𝜑𝑗, 𝑥〉. F can be written as a matrix F ∈ℂm×n. This matrix has rank n, since the 

span of its rows is all of ℂn by assumption; it follows that all the singular values of F are nonzero. We denote the largest 

singular value by σ1, and the smallest by σn. Then for any x ∈ℂn, 

 

Thus, F is a frame operator, 
 
is a frame of ℂn, and the frame bounds are given by the squares of the smallest and 

largest singular values of F (i.e., the absolute values of the eigenvalues of F∗F). 

It is also possible to have an infinite frame in finite dimensions, as long as the length of the frame vectors goes to zero 

sufficiently fast. 

Lemma 9. A countable spanning set  in ℂn is a frame iff   

Proof. Let  be a set that spans ℂn. 

 

Suppose  iff  For any x ∈ℂn, the Cauchy-Schwarz inequality gives 

 

 
 

so F is bounded above. 

Since {φj} spans ℂn, we can choose a finite subset that also spans ℂn, say  where φi ′∈{φj}. By Lemma 17, this 

subset is a frame; say its lower frame bound is A. Then 

 
and F is bounded below. It follows that F is a frame operator and the {φj} are a frame of ℂn. 

 

4.0 Conclusions 

We have introduced the concept of frames and gone through the basic definitions and important theorems. The real work, 

being in construction of frames that can be used in applications. References (1) and (2) provide constructions of wavelet 

frames and windowed Fourier frames, which have found great use in signal processing applications. The results we have 

presented about finite frames indicate that a normalized tight frame (FNTF) exhibits a great deal of symmetry, and that 

these FNTFs can be fully classified. The infinite dimensional analogous has not, I suppose, been fully explored; similar 

classification results for infinite dimensional normalized tight frames could give some insight into the concept of 
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symmetry and “equidistribution” in the infinite dimensional setting. 
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