

ARTIFICIAL INTELLIGENCE IN BUSINESS MANAGEMENT AND INDUSTRIAL UPGRADING: APPLICATIONS AND EXPLORATIONS

¹Li Jinghan, ²Srikrishna Banerjee, ³Archita Chakraborty
^{1,2,3}Lincoln University College, Petaling Jaya, Malaysia

Corresponding Author:

To Cite This Article: Jinghan, L., Banerjee, S., & Chakraborty, A. (2025). ARTIFICIAL INTELLIGENCE IN BUSINESS MANAGEMENT AND INDUSTRIAL UPGRADING: APPLICATIONS AND EXPLORATIONS. Journal of Advance Research in Applied Science (ISSN 2208-2352), 11(1), 73-79. <https://doi.org/10.61841/dw40qn42>

ABSTRACT

Focussing on the revolutionary implications of artificial intelligence (AI) throughout several industries, the current study investigated the connection between AI applications and industrial upgrading. This research examined the ways in which AI tools like robots, machine learning, and predictive modelling have simplified operations, increased productivity, and encouraged innovative ideas in the corporate world. The capability of businesses to optimise resource utilisation, increase making choices, and accommodate to the increasing needs of worldwide markets was the primary focus in relation to AI. The results showed that AI was crucial in changing sectors from more conventional to more technologically orientated ones. Organisations experienced cost savings, quality improvements, and a decrease in errors in operations after implementing AI into their supply chain and manufacturing systems for management. In addition, businesses were able to enhance their competition and resiliency using machine learning-driven analysis of information, which allowed them to anticipate consumer demands, spot trends, and execute continual changes. The research also showed that AI had an effect beyond production in areas like medical care, electricity, and goods and services, where effectiveness and standard of customer service had improved dramatically. Usage of AI has also helped with conservation by encouraging more effective use of resources and aiding inventions that are kind to the environment. Finally, the study demonstrated that AI can be a driving force behind and some help in the process of industrial upgrading. AI has become an essential component in fostering modernisation in dynamic industries and encouraging advancement in the economy through its emphasis on effectiveness, versatility, and creativity.

KEYWORDS: Artificial intelligence (AI); Industrial upgrading; Application of AI; Automation; Innovation.

1. INTRODUCTION

With its creative approaches, improved productivity, and decreased prices, artificial intelligence (AI) is revolutionising several sectors. AI is the study and creation of computer systems with the ability to acquire knowledge, resolve problems, perceive, make decisions, and comprehend language, all of which are traditionally associated with human intellect. Data mining, deep computing, visual computing, and the processing of natural language are some of the methods used by AI algorithms to sift through mountains of data in search of patterns that might inform their projections and choices. Virtual aids, automation vehicles, identification of fraud systems, picture and recognition of voices, and healthcare are just a few areas where AI is finding use (Zhang, 2024). Advances in AI have the potential to revolutionise numerous sectors and parts of people's daily lives. To help to resolve the issue of imbalanced and inadequate growth, AI achieves an elevated degree of adaptability between the industrial upgrading and the demand from customers' side. To increase the effectiveness of resource utilisation, logical distribution, and the coordination between manufacturing elements, AI has developed novel methods of workforce divisions and inter-industry collaboration at the supply-chain level. When it comes to gathering details and accurately predicting shifts in marketplace availability and demand for goods, AI may employ the full potential of big data, cloud computing, as well as additional innovations. To achieve the goal of intellectualising manufacturing connections, the supply aspect is continuously improved to accommodate the rising demand end. This would improve the operational capability of the industrial upgrading sector and help with issues like manufacturing stockpile delays and turnover of funds. Smart technology is strongly embedded into innovations and manufacturing chains, and AI is extensively applied in many business contexts at the consumer side. AI drives the subsequent computer transformation, technological development, and creativity diffusion-driven industrial upgrading (Cheng, 2024). Internet connectivity drives contemporary industrial upgrading by fostering emerging technologies, businesses, and commercial models. Providing sophisticated and exceptional network infrastructure solutions for industrial sectors can decrease the barrier for firms to receive marketplace knowledge and create an effective knowledge framework for industrial upgrading. As AI and actual economics integrate faster, its influence on industrial upgrading is increasing.

2. BACKGROUND OF THE STUDY

With increasing international growth in economies, AI is transforming industrial structures globally, especially in China, which holds the second-biggest economy. When it comes to fostering industrial upgrading and economic development, the use and encouragement of AI technologies by the world's second-biggest economy—China—is of the utmost importance. AI has been used to its maximum ability to boost creativity, effectiveness in the utilisation of resources, and efficiency as China moves away from conventional factories and towards technologically advanced and service-based businesses (Zou & Xiong, 2023). Using the "demographic dividend" and the "policy dividend" as a springboard, China has transformed into a global manufacturing powerhouse since its transformation and liberalisation, achieving a miracle of prosperity on a grand scale. Still, China's economy is in a terrible state right now. First, the termination of regional component distributions has had a significant effect on the conventional profit paradigm. Meanwhile, COVID-19 has obstructed the global economy on multiple occasions, reducing the need for manufacturing consumption, investments, and exporting while simultaneously ratcheting down the strain on growth (Lin et al., 2024). China faces both opportunities and challenges in its setting of another phase of industrialisation and advances in science and technology. Transforming and upgrading China's industrial sector has emerged as a critical factor guiding the country's long-term economic growth. An important recommendation from the Communist Party of China's 19th National Congress statement was to encourage a closer relationship between AI and the actual economy. This is how industrial upgrading is planned and predicted ahead. The state of AI in China is flourishing, and the country is quickly becoming the global leader. Data from the "China Internet Development Report 2020" shows that China is currently surpassing the US in terms of AI requests for patents, making it the leading country globally. The use of AI is spreading to every aspect of society, and the fundamental sectors are growing. In addition, the "China AI Industry White Paper 2020" highlighted that manufacturers contribute approximately 57.3 per cent of the business's total market value, and that China's industrial upgrading magnitude is 140.2 billion yuan (Rong et al., 2024). With the use of AI, manufacturing intelligence and automation can advance, and productive labour can be freed up.

3. PURPOSE OF THE RESEARCH

Examining how the incorporation of AI aided in the revolution and progress of many sectors was the driving force for the study. The purpose of the research was to examine how AI systems can improve efficiency, effectiveness, and choice-making in various industries. The study's stated goal was to investigate existing examples of the use of AI tools for process improvement, cost reduction, and creativity in manufacturing. These tools include predictive modelling, machine learning, and robotics. The study's secondary objective was to examine the possibilities and threats that businesses confronted when implementing AI to draw conclusions about the connection between the adoption of AI and industrial upgrading. The focus was on figuring out how much AI changed the framework of industry, promoted environmentally friendly behaviours, and sped up technical modernisation. In addition, the research project was focused on shedding light on how various industries made use of AI to facilitate sophisticated production procedures, enhance the productivity of supply chains, and boost productivity in world markets. The overarching goal of the study was to investigate the revolutionary advantages of AI and provide a thorough assessment of its uses in industrial upgrading. The goal was to help industry successfully implement AI for future generations while also adding educational understanding.

4. LITERATURE REVIEW

Some logging processes and inference tasks, such as lithographic determination and logbook curve restoration, have shown promising results when using machine learning. Applying improvement and deep learning to the field of reservoir engineering has allowed for the optimisation of water flooding growth in real-time as well as the forecast of the extraction of oil and gas (Zou, 2024). Data mining has been used in several fields such as subsurface facilities engineering, well drilling, and completions to create smart tools and technology. An earlier study detailed the advancements in AI investigation and its use in petroleum mining and extraction, with an eye towards meeting the actual requirements of this industry. The study proceeded to address the future of AI and its potential uses and growth paths (Kuang et al., 2021). Investigation into and use of AI technologies in logging, geological prospecting, drilling and finalisation, watershed engineering, and surface infrastructure engineering has been comprehensively covered in this investigation, which considers the real needs of exploration as well as development. The study also provides a viewpoint on future developments of AI technology, highlighting its application illustrates and its current expanding pattern. Previous studies have defined industrial AI in the context of industry 4.0, examined its main components, and shown its current patterns in a comprehensive way (Peres et al., 2020). The results are supposed to help academics and industrialists gain a better understanding of the knowledge required for the transition into AI-supported industry 4.0, which steps to adhere to, and any problems which could show up along the way. In a prior investigation, the potential broad use of AI in the exploration and exploitation of oilfields was examined. The report started by outlining the many areas where AI has been making waves, drawing attention to the pressing requirement for modern technologies in the oilfield growth and discovery sector. After that, the research explored into the difficulties of oilfield prospecting, such as difficult geographical environments, high expenditures, and data handling and interpreting intricacy. It went into further detail about the practical benefits of AI in these areas (Cao & Wu, 2024). The topics covered in the conversation ranged from seismic exploratory and interpretation of information to data optimisation and administration to automation drilling innovations, automation upkeep, machinery surveillance, and environmentally friendly growth and protection of the environment. Viewers were given a thorough picture of the potential of AI applications in oilfield exploration and production by means of this research's extensive and detailed analysis.

5. RESEARCH QUESTION

- What is the effect of application of artificial intelligence on industrial upgrading?

6. RESEARCH METHODOLOGY

6.1 RESEARCH DESIGN

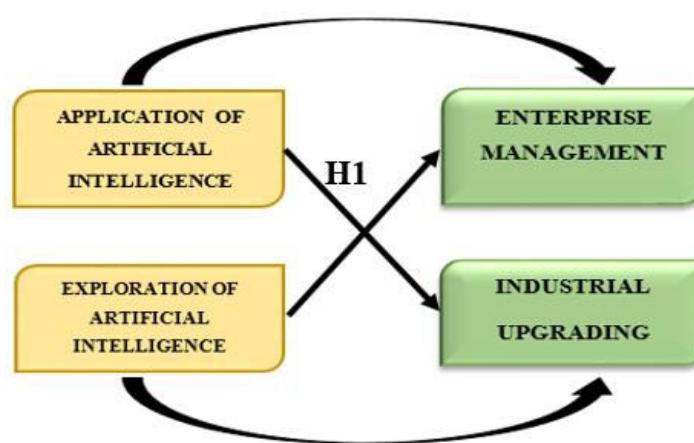
Investigators used SPSS version 25 to analyse the quantitative data. To find out how significant and what kind of statistical link it was, researchers used odds ratios and a 95% confidence interval. A statistically significant finding is defined as one with a p-value lower than 0.05. Data exploration was further aided by descriptive statistics. Researchers used quantitative methodologies to assess structured instruments, like surveys, to ensure the data was accurate and dependable.

6.2 SAMPLING

A simple random sampling approach was used to conduct the inquiry. For the opportunity to participate in the study, individuals had to complete questionnaires. After 473 users suggested from the Rao-soft software were selected as members of the research's sample, 550 structured questionnaires were sent out. Out of 537 total replies, 500 were accurate while 37 were discarded due to incompleteness. A total of 500 people were included in the sample.

6.3 DATA AND MEASUREMENT

The most prevalent form of data collection was the distribution of survey questionnaires to individuals with relevant expertise in the application of AI. Part one of the survey consisted of collecting respondents' basic demographic data. The second part of the survey asked participants to rate their level of agreement with statements about the study's topic on a 5-point Likert scale. Reputable sources, including online databases and trade publications, provided the secondary data used to back up the primary conclusions.


6.4 STATISTICAL SOFTWARE:

Statistical analysis was performed with the support of SPSS edition 25 and Microsoft Excel.

6.5 STATISTICAL TOOLS

A descriptive analysis was performed with the goal to obtain a more profound comprehension of the data. For the testing the hypothesis and identifying any differences between the groups, the researcher used analysis of variance (ANOVA). Researchers used descriptive statistics to describe the trends, patterns, and correlations observed in the meticulously chosen sample.

7. CONCEPTUAL FRAMEWORK

8. RESULT

- **FACTOR ANALYSIS**

Factor Analysis (FA) is a popular application that involves confirming the underlying component structure of a collection of measurement items. It is thought that elements that cannot be seen directly impact the scores of the variables that have been examined. One method that relies on models is accuracy analysis. The focus of this research is on establishing relationships between visible events, their latent causes, and measurement errors. The Kaiser-Meyer-Olkin (KMO) Method can be used to determine the suitability of the data for factor analysis. The researcher check if the sample is adequate for the whole model and for each part of it. It is feasible to measure the amount of common variation across numerous variables using the statistics. Factor analysis works better with data that has lower percentages.

Kaiser considers these levels to be suitable: The following are the requirements for approval as per Kaiser's specifications: An appalling 0.050 to 0.059, well below the usual range of 0.60 to 0.69. The typical range for middle grades is between 0.70 and 0.79.

A quality point score between 0.80 and 0.89. The interval from 0.90 to 1.00 astounds them.

Table 1: Examination of KMO and Bartlett's Sampling Adequacy

According to the Kaiser-Meyer-Olkin scale: 0.974

The results of Bartlett's test of Sphericity are as follows:

4850.145 is the approximate chi-square value

190 is degrees of freedom (df); sig = 0.000.

Table 1: KMO and Bartlett's Test

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		0.974
Bartlett's Test of Sphericity	Approx. Chi-Square	4850.145
	df	190
	Sig.	0.000

Applying Bartlett's Test of Sphericity provided additional confirmation of the correlation matrices' overall significance. Kaiser-Meyer-Olkin adequate sampling is determined by a value of 0.974. The investigators obtained a p-value of 0.00 using Bartlett's sphericity test. This correlation matrix is clearly not a correlation matrix, as shown by a significant result from Bartlett's sphericity test.

❖ INDEPENDENT VARIABLE

• APPLICATION OF ARTIFICIAL INTELLIGENCE (AI):

AI is a wide field of computational biology that aims to create intelligent computers capable of performing tasks that have historically required intelligence from people. While AI covers a lot of ground, advances in deep learning and machine learning have led to a dramatic shift in every sector of manufacturing technology and AI implementations in the business world. By automation routine tasks and increasing output, AI improves the service experience for both businesses and their customers. Using AI, computers can imitate, and in some cases even exceed, human intelligence (Nagi et al., 2023). Combining copious amounts of data with fast, repeatable computing and sophisticated algorithms allows AI to gain insight on its own from statistical patterns or features. AI technologies are the next step in machine learning; they teach computers to solve problems on their own. As a result, the device can acquire new tasks and complete them more quickly than a human being could. AI has the potential to pave the path for the following era of product and service development, even in sectors where Chinese firms already have a strong position. A more sustainable, biological, and renewable future may be possible in sectors including agriculture, healthcare, clothing, and tourism with the assistance of AI (Vaishya et al., 2020). AI could increase sales, improve machine maintenance, increase manufacturing output and quality, and improve service to clients, and additional benefits, in along with reducing the use of petroleum-based fuels.

❖ DEPENDENT VARIABLE

• INDUSTRIAL UPGRADING:

Along with the LASIS procedure, technical innovation drives industrial upgrading; specifically, it supports industrial progressive upgrading involving the introduction of novel technologies, modifications in architecture, standardisation, coordination, and shifts in perspective. Intrinsic systems for industrial upgrading vary throughout phases of innovation in technology. There is a period of early adoption when modern technologies and goods become available (Zou, 2024). The primary mechanism by which architectural creativity creates technological hurdles is the creative competitiveness that leads to the establishment of predominant technologies and goods. The connection among industrial upgrading strategy and utilisation of energy is entirely adverse. The conservation of energy effects of the industrial upgrading programme can be significantly affected by cooperation among communities. Lowering expenses, supply-chain upgrading, reductions of perspective and modularisation, and dissemination of technology are four transitional factors that encourage industrial upgrading in the two-stage recursive standardisation step (Guo et al., 2024). During the incorporation creativity phase, four types of innovations promote industrial upgrading: diffusion amalgamation, absorbent amalgamation, technological convergence, and within-company technological integration. During this phase of change, the previous viewpoint is replaced by an entirely different and more effective viewpoint.

• RELATIONSHIP BETWEEN APPLICATION OF AI AND INDUSTRIAL UPGRADING:

Since AI encourages enterprises to move away from outdated manufacturing techniques and towards more modern, technologically advanced structures, the application of AI has been strongly associated with industrial upgrading. Machine learning, smart choice-making, and statistical modelling are all made possible by AI, which boosts productivity, cuts expenses, and improves the performance of goods. Industry has been empowered to optimise techniques, minimise mistakes, and adapt more efficiently to marketplace needs by incorporating AI into the creation of products, coordination management, and production (Zou & Xiong, 2023). With the help of AI, it is possible to innovate, modify, and modernise existing industrial processes, which is essential for upgrading. Intelligent manufacturing, which makes use of AI-driven robots and continuous surveillance, has helped to promote sustainability, adaptability, and accuracy. Big data insights applications of AI have also aided companies in spotting patterns, predicting customer demand, and formulating approaches to constant enhancement. Distribution, medical care, and energy are just a few of the non-manufacturing industries that have used AI to improve services, simplify processes, and boost profitability (Hao et al., 2025). With the help of AI, highly valuable sectors have been able to quickly shift from systems that rely on manual labour to ones that rely on intelligence. Another important part of industrial upgrading, the shift to digital technology, has been fostered, as has competition worldwide. By promoting effectiveness, imagination, and adaptability, the application of AI to industrial upgrading has operated as both a catalyst and facilitator.

The researcher has developed the following hypothesis considering the foregoing discussion to assess the relationship between application of AI and industrial upgrading:

- ***“H01: There is no significant relationship between application of AI and industrial upgrading.”***
- ***“H1: There is a significant relationship between application of AI and industrial upgrading.”***

Table 2: H₁ ANOVA Test

ANOVA					
Sum					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	65,713.746	137	9838.853	1098.576	0.000
Within Groups	743.713	362	8.956		
Total	66,457.459	499			

This inquiry has yielded substantial findings. With a p-value of 0.000 and an F-value of 1098.576, both of which are lower than the 0.05 alpha level, statistical significance is shown. The results determine that the "**H₁: There is a significant relationship between application of AI and industrial upgrading**" has been accepted, and the null hypothesis has been rejected.

9. DISCUSSION

According to the study initiative, the application of AI had been essential in advancing industrial upgrading throughout multiple industries. Results indicated that AI had helped businesses become more efficient, cut down on operating costs, and make better decisions. Industries have improved their manufacturing procedures, administration of supply chains, and response to marketplace swings by incorporating algorithms for learning, robots, and modelling for prediction. The study demonstrated that companies had the ability to boost creativity and productivity through the implementation of AI by replacing antiquated processes with more technically updated technologies. The trend in factories towards innovative manufacturing and robotics has promoted efficiency and flexibility. In addition, companies were able to spot trends, foresee customer needs, and execute incremental upgrades with the help of machine learning-driven data analysis. Because of this, industrial modernisation was sped up, and the world became a more dynamic place. The investigation also showed that AI produced an impact outside of production in areas like medical care, power, and service industries, where it improved production accuracy and effectiveness. Moreover, the findings indicated those sectors making use of AI had gone through digitisation more quickly, resulting in modifications to their infrastructure that were in line with global norms. The conversation validated that AI had functioned as an impetus and enabler for industrial upgrading. AI has also helped preserve the planet by facilitating more effective use of resources, decreasing energy usage, and encouraging environmentally friendly innovations. These results demonstrated that AI served as an instrument for a long-term plan in addition to driving technology. Particularly in emerging economies such as China's, AI has bolstered the basis for prospective growth in manufacturing and facilitated financial modernisation through fostering creative thinking, efficiency, and resilience.

10. CONCLUSION

According to the study's findings, the research concluded that AI has revolutionised both the service and manufacturing sectors, constituting a major force in the process of industrial upgrading. The results showed that AI has improved efficiency, simplified processes, and fortified choice-making, allowing sectors to upgrade from older, less technologically sophisticated models. Organisations have seen cost savings, mistake reduction, and higher product quality because of AI applications in automation, robots, and analytics for prediction. Additionally, the study demonstrated that AI's impact went throughout production, leading to enhanced collaboration within the supply chain, improved client participation, and more effective administration of resources. The adoption of environmentally friendly procedures that are in line with world standards has been promoted by these improvements, and the evolution of technology has been hastened. In addition, AI had boosted creativity by letting companies develop new ways of doing business, enter fresh marketplaces, and stay competitive in the age of digital commerce. In general, the study found that the application of AI has not only improved modernisation as well as productivity but also performed an important function in fostering sustainable industrial upgrading. The results demonstrated how crucial AI is as a driver of creative thinking, technical progress, and long-term economic prosperity.

REFERENCES

1. Cao, X., & Wu, B. (2024). Exploration of oilfield development in the era of intelligence: Prospects for the application of artificial intelligence in oilfield exploration and development. *Advances in Resources Research*, 108-124.
2. Cheng, Y. (2024). Research on the Transformation and Upgrading of Manufacturing Industry in the Era of AI Empowerment. *Journal of Artificial Intelligence Practice*, 182-187.
3. Guo, B., Feng, W., & Lin, J. (2024). The effect of industrial upgrading on energy consumption. *Energy Strategy Reviews*, 101451.

4. Hao, X., Ratniyom, A., & Sukpaiboonwat, S. (2025). The impact of AI-driven industrial upgrading on economic development. *Future Technology*, 1-11.
5. Kuang, L., He, L., Yili, R., Kai, L., Mingyu, S., Jian, S., & Xin, L. (2021). Application and development trend of artificial intelligence in petroleum exploration and development. *Petroleum Exploration and Development*, 1-14.
6. Lin, C., Xiao, S., & Tang, P. (2024). Does Artificial Intelligence Improve Export Technical Complexity Upgrade of Manufacturing Enterprises? Evidence from China. *Sage Open*, 21582440241267126.
7. Nagi, F., Salih, R., Alzubaidi, M., Shah, H., Alam, T., Shah, Z., & Househ, M. (2023). Applications of artificial intelligence (AI) in medical education: a scoping review. *Healthcare Transformation with Informatics and Artificial Intelligence*, 648-651.
8. Peres, R., Jia, X., Lee, J., Sun, K., Colombo, A., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook. *IEEE access*, 220121-220139.
9. Rong, J., Wang, W., & Zhang, H. (2024). Does artificial intelligence improve energy productivity in China's industrial sector? Empirical evidence based on the spatial moderation model. *Energy & Environment*, 4026-4048.
10. Vaishya, R., Javaid, M., Khan, I., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, 337-339.
11. Zhang, Y. (2024). Artificial Intelligence and the Transformation of China's Industrial Structure: Opportunities, Challenges, and Implications. *SHS Web of Conferences* (p. 01017). EDP Sciences.
12. Zou, T. (2024). Technological innovation promotes industrial upgrading: An analytical framework. *Structural Change and Economic Dynamics*, 150-167.
13. Zou, W., & Xiong, Y. (2023). Does artificial intelligence promote industrial upgrading? Evidence from China. *Economic research-Ekonomska istraživanja*, 1666-1687.