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Abstract: - 
This research addressed a convenient analysis and optimization approach for chemical process based on software 

simulation, Response Surface Methodology (RSM) and the mathematical software Matlab simultaneously. A case study 

of CO2 dehydration was used to showcase the capabilities of the model. In this paper, the objective of the model was to 

analyze the separate effects and interaction effects of factors to total energy cost of the CO2 dehydration process, and 

obtain explicit formulae between independent parameters and response values. With Matlab, the minimum energy 

consumption was determined by optimization of parameter setting.  
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I. INTRODUCTION  

Producing qualified product with minimal energy consumption is always the pursuit of chemical industry. Therefore, 

obtaining energy economization by giving proper parameter setting is imperative and valuable when adjust a plant or 

design a new process. In recent years, conventional methods using deterministic or stochastic techniques have been widely 

employed to identify optimal solutions from the formulated optimization model in various industrial applications[1]. 

Usually, more than one factor which affects the energy consumption of a process exists. From the mathematic point of 

view, the relation between factors and energy cost can be concluded as follow:  

 
 

Where E is the total energy consumption of a process; xi is the factor which has influence on the total energy consumption.  

According to whether the chemical process investigated is linear or not, function f x x( 1 2, , xn)  represents the 

linear/nonlinear mapping from the input space to the output space. Obviously, optimization is conducted within the space 

based on the scales of parameters.   

However, most of the time, the relation are not explicit formulae in actual field[2]. Even in the simulation software, the 

overall formulae are usually invisible or not straightforward to derive. Hence, univariate studies are often employed to 

investigate each factor’s influence on energy consumption. Namely, adjust only one factor while keep other factors at a 

fixed level to study the change regulation of dependent value. Unfortunately, the evaluation of the interaction effects 

between the factors by univariate studies is impossible. If significant interaction effects between factors exist, the optimal 

conditions indicated by the univariate studies will be different from the correct results of the multivariate optimization [3-

5]. The larger the interaction effects, the greater the difference that will be found using univariate and multivariate 

optimization strategies[6]. So the univariate procedure may fail since the effect of one variable can be dependent on the 

level of the others involved in the optimization. In another word, the combination of each factor at their local optimums 

doesn’t guarantee that it is the global optimum when all the variables are changed simultaneously. Therefore, it is vital to 

conduct process optimization to attain global optimum based on explicit formulae. Herein, Response Surface 

Methodology (RSM), which combines experimental design with statistical analysis, can be utilized to investigate the 

single factor effects and interaction effects of parameters on the response values quantitatively[7].  

In this paper, a case study of CO2 dehydration was implemented to showcase the capabilities of the RSM model. Based 

on the Aspen Hysys simulation of the dehydration unit, RSM model was established as the explicit water content and 

energy consumption quadratic models of the dehydration unit. After analyzing, the parameter setting was optimized with 

mathematical software Matlab. The merit of simplicity makes it convenient and practical for energy consumption analysis 

and optimization in process design and parameter adjustment.   

 

II. CASE STUDY OF CO2 DEHYDRATION  

A. Process description   

To investigate the method of analysis and optimization to energy consumption in chemical process, this paper use CO2 

dehydration process as the case study. CO2 capture, utilization, and sequestration (CCUS)[8] is taken as a promising 

reduction alternative. However, CO2, comes from sources such as power plants, gas field, and facilities that consume 

fossil fuels, is always saturated with water[9-11], which make it inefficient to transport and utilize CO2 immediately. 

Moreover, when temperature decreases, high pressure in pipeline make it easy to result in pipeline blocking caused by 

the formation of carbon dioxide hydrate[12]. Besides, free water in acid gas will contribute to corrosion of the plant and 

the pipeline[13]. To avoid transport inefficiency, corrosion and hydrate formation, the water volume fraction in CO2 stream 

should be limited within 500×10-6[14-15]. To meet the water content requirement, acid gas dehydration by simple cooling 

and compression is not enough to avoid corrosion and hydrate problem[16-17]. M. M. Faruque Hasan et al. suggested use 

the most economical alternative TEG-absorption[8] for flue gas dehydration. The detailed configurations and description 

of the water absorption processes are presented in Figure 1.  

 
Figure 1: The simplified flowsheet of CO2 dehydration process 

A-Filter separator; B-Absorber; C-Flash tank; D-Desorber; E-Filter  

  

Feed gas, removed free water and mechanical impurity in filter separator, is injected into the absorber bottom, reversely 

contact the Lean TEG to get dehydrated. Dried product gas is discharged from the top of absorber to the next unit, while 
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water-rich TEG is subsequently got throttled, flashed, and then regenerated in a distillation column (desorber) and the 

temperature of reboiler in this column is typically limited to 204 °C to avoid TEG thermal degradation. After regeneration, 

lean TEG gets pressure boosted by pump and enters into the absorber overhead.  

 

B. Process simulation by Hysys  

Herein, Aspen Hysys, commercially available software, was used as a prophase process simulator. Chen Xi[18] 

demonstrates that it is accurate to employ Aspen Hysys to describe CO2 dehydration process. To model the 

thermodynamic properties of TEG and the dehydration process, the Peng−Robinson equation fluid package was 

utilized[19].  

Flow rate of feed gas, temperature of feed gas, pressure of absorber, plate number of absorber and concentration of lean 

TEG were set the same as the literature[18]. Tray efficiency of absorber in TEG absorption is usually 25 %[20]. The 

temperature of lean TEG entering into the absorber overhead is also vital for dehydration process, because too low 

temperature would result in TEG foaming while too high temperature would lead to TEG loss. So the inlet temperature 

of lean TEG was set 40 ℃.  

The parameters setting and their initial values are listed in Table 1 and the compositions of acid feed gas from article are 

given in Table 2.  

 

Table 1: Parameters setting and variable value of simulation  

Simulation parameters  unit  value  

Flow rate of feed gas  kmol/h  867  

Temperature of feed gas  ℃  30  

Pressure of absorber  kPa  4000  

Plate number of absorber  floor  8  

Tray efficiency  %  25  

Concentration of lean TEG  %  98.7  

Inlet temperature of lean TEG  ℃  40  

TEG circulation volume rate  L/h  200  

  

Table 2: Composition of acid feed gas of CO2 dehydration unit[18] (y %)  

CO2  N2  H2O  CH4  C2H6  C3H8  

95.27976  1.24688  1.20000  2.21400  0.02968  0.02968  

 

C. Parameter selection for RSM modeling  

RSM is based on the work proposed by Box and Wilson[7] in which experimental design and procedures were introduced 

for determining a path of steepest ascent and for exploring maxima and ridges. It was defined as a group of mathematical 

and statistical techniques for analyzing problems by investigating a response of interest influenced by variables or factors 

to be optimized. Modeling can be performed by extracting quantitative data from a set of experiments with an appropriate 

experimental design and fitting them into mathematical equations.  

The energy consumption to CO2 dehydration process was calculated by Eq.2[21]  

                    (2) 

Where E is the total energy consumption of CO2 dehydration unit, kW; Ep is energy consumption of circulation pump, 

kW; Er is the calefaction heat quantity of reboiler, kW.  

Flow rate of feed gas (X1, kmol/h), temperature of feed gas (X2, ℃), pressure of absorber (X3, kPa) and TEG circulation 

volume rate (X4, L/h) usually have greater effect on the performance of absorption  [22], which affect the water content of 

product gas and energy consumption of the process. Hence, these four factors and the response variables water content 

(YH2O, 10-6) and energy consumption (E, kW) were chosen.   

The flow rate of feed gas and the temperature of feed gas were selected as the feed gas varying parameters, whose ranges 

were 693.6~1040.4 kmol/h (±20 % of the flow rate value 867 kmol/h set in literature[18]) and 20~30 ℃ (general 

temperature in industrial field), respectively. The investigation scale of absorption pressure was set ranging from 

2000~4000 kPa and the variation range of TEG circulation volume rate was 140~200 L/h.  

 

D. Sample points design  

In general, a bulk of data is needed for regression to manifest the multivariate relation. For the sake of obtaining a precise 

fitting model with less data, some complex experimental sample point designs are introduced based on the orthogonal 

design, such as Doehlert matrix (DM), central composite designs (CCD) and three-level designs such as the Box-Behnken 

design (BBD) [23,24].  

Box-Behnken designs (BBD) are a class of rotatable or nearly rotatable second-order designs based on three-level 

incomplete factorial designs[25]. It can be applied to evaluate the independent effects and interaction effects of parameters 

on the response values effectively with fewer experimental sample points[6]. For three factors its graphical representation 

can be seen as the form below:  
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Figure 2: The cube for BBD and three interlocking 22 factorial design 

  

A comparison between the BBD and other response surface designs (central composite, Doehlert matrix and threelevel 

full factorial design) has demonstrated that the BBD and Doehlert matrix are slightly more efficient than the central 

composite design but much more efficient than the three-level full factorial designs where the efficiency of one 

experimental design is defined as the number of coefficients in the estimated model divided by the number of 

experiments[6].  

Another advantage of the BBD is that it does not contain combinations for which all factors are simultaneously at their 

highest or lowest levels. So these designs are useful in avoiding experiments performed under extreme conditions, for 

which unsatisfactory results might occur.  

According to Box-Behnken Design, flow rate of feed gas (X1), temperature of feed gas (X2), pressure of absorber (X3) and 

TEG circulation volume rate (X4) were arrayed with the assistance of software Design Expert. The factors distribution of 

response surface is listed in Table 3.   

 

Table 3: Factors distribution of response surface  

Factor level  
 Factors selected in CO2 dehydration process   

X1, kmol/h  X2, ℃  X3, kPa  X4, L/h  

-1  693.6  20  2000  140  

0  867  25  3000  170  

1  1040.4  30  4000  200  

 

The formulae to the response surface model can be abstracted as follow:  

                          (3) 

 

Where y is response value; xi , xj are the value of parameters investigated in different levels; m is the number of variables; 

β0 is the constant term; βi is the linear coefficient; βii is the quadratic coefficient; βij is the interaction coefficient; ε is the 

error term.  

 

E. Model regression  

The water content of product gas (YH2O) and the energy consumption (E) of CO2 dehydration process under different 

condition are listed in Table 4.   
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Table 4: Experimental design and simulation results of response surface  

test number  X1, kmol/h  X2, ℃  X3, kPa  X4, L/h  YH2O, 10-6  E, kW  

1  -1  -1  0  0  311  21.85  

2  1  -1  0  0  359  25.21  

3  -1  1  0  0  680  26.47  

4  1  1  0  0  813  31.45  

5  0  0  -1  -1  763  25.38  

6  0  0  1  -1  480  22.76  

7  0  0  -1  1  653  31.15  

8  0  0  1  1  417  28.09  

9  -1  0  0  -1  495  21.24  

10  1  0  0  -1  590  25.25  

11  -1  0  0  1  434  26.39  

12  1  0  0  1  505  30.96  

13  0  -1  -1  0  454  25.24  

14  0  1  -1  0  1071  31.73  

15  0  -1  1  0  306  23.08  

16  0  1  1  0  645  28.19  

17  -1  0  -1  0  637  25.82  

18  1  0  -1  0  759  30.65  

19  -1  0  1  0  407  23.33  

20  1  0  1  0  478  27.5  

21  0  -1  0  -1  360  20.86  

22  0  1  0  -1  817  26.04  

23  0  -1  0  1  317  25.95  

24  0  1  0  1  698  31.94  

25  0  0  0  0  501  26.11  

 

Based on the regression results, two formulae of the RSM model were obtained. Eq.4 describes the relation between the 

four factors and the water content of product gas. Eq.5 implies the relation between the four factors and the energy 

consumption of the CO2 dehydration process.  

 

        (5) 

 
F. Model verification  

The variance analysis of the quadratic regression model using Design Expert is listed in Table 5, and the variance analysis 

of the RSM model is shown in Table 6.  
 

Table 5: Analysis results of variance for the regression polynomial mode  

source  
 

Sum of Squares  

Formula 1 

 
Mean  
Square  

  

 
F Value  

  

 
p-value    

 Formula 2   

Sum of 

Squares  

Mean  

Square  

F Value  p-value  

Model  885300  63239.16  181.73  < 0.0001    270.47  19.32  1391.48  < 0.0001  

X1  24300  24300.00  69.83  < 0.0001    55.99  55.99  4032.45  < 0.0001  

X2  570700  570700  1640.13  < 0.0001    94.25  94.25  6788.17  < 0.0001  

X3  214400  214400  616.14  < 0.0001    24.14  24.14  1738.67  < 0.0001  

X4  19280.08  19280.08  55.41  < 0.0001    90.48  90.48  6516.43  < 0.0001  

X1 X2  1806.25  1806.25  5.19  0.0459    0.66  0.66  47.26  < 0.0001  

X1 X3  650.25  650.25  1.87  0.2016    0.11  0.11  7.84  0.0188  

X1 X4  144.00  144.00  0.41  0.5345    0.078  0.078  5.65  0.0389  

X2 X3  19321.00  19321.00  55.52  < 0.0001    0.48  0.48  34.29  0.0002  

X2 X4  1444.00  1444.00  4.15  0.0690    0.16  0.16  11.81  0.0064  

X3 X4  552.25  552.25  1.59  0.2364    0.048  0.048  3.49  0.0914  

X21  15.93  15.93  0.046  0.8349    0.011  0.011  0.78  0.3968  

X22  5220.71  5220.71  15.00  0.0031    0.086  0.086  6.17  0.0323  

X23  14995.10  14995.10  43.09  < 0.0001    1.75  1.75  126.25  < 0.0001  

X24  77.82  77.82  0.22  0.6464    0.016  0.016  1.17  0.3049  

Residual  3479.75  347.98        0.14  0.014      

Cor Total  888800          270.61        
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Table 6: Variance analysis of the RSM model  

  Std. Dev.  R-Squared  Adj R-Squared  Adeq Precision  

Model 1  18.65  0.9961  0.9906  51.098  

Model 2  0.12  0.9995  0.9988  121.579  

 

Both the p-values of Formula 1 and Formula 2 were less than 0.0001, and the relative Error between predicted values and 

Hysys values were low, which suggest that the regression model was significant to describe the water content of product 

gas and energy consumption of the process when feed gas condition changed. The high correlation ratio R-Squared 

(0.9961 and 0.9995 of Formula 1 and 2, respectively) guaranteed that the model is reliable. The adjusted correlation ratio 

R-Squared were 0.9906 and 0.9988, which mean the regression model can describe 99.06 % variance of the water content 

and 99.88 % variance of the energy consumption. The Adequate Precision values 51.098 and 121.579 (higher than 

required value: 4) of Formula 1 and 2 show the rationality. Comparison between predicted values and Hysys values are 

listed in Table 7. The low Relative Error demonstrated the accuracy of the RSM model.   

  

Table 7: Comparison between predicted values and actual values  

 
 

III. Analysis and optimization  

A. Analysis of response surface model  

Response surfaces were attained utilizing Design Expert based on the regression model. The single factor effects and 

interaction effects on the response values were shown by three-dimension graphs directly.   

The slight curvature of the surface and the irregular frontier in Figure 3 and Figure 4 suggested that high order relation 

rather than simple linear relation existed in the model. The unequal distance of contour line suggested that the interaction 

effect existed between parameters.  

According to Figure 3 and Figure 4, the higher the flow rate of feed gas and temperature of feed gas, the higher the water 

content and energy consumption. Higher flow rate make feed gas carry more water, which resulted in inadequate water 

absorption and higher energy penalty for TEG regeneration. Higher temperature leads to higher absolute humidity of feed 

gas. Under saturation state, feed gas contains more water, so it exhibited the same effect. By combining this information 

with the p-value in Table 5, the temperature of feed gas had stronger effect than flow rate of feed gas on the response 

values. Correspondingly, when feed gas conditions varied and the water content and the energy consumption went higher, 

the rise of TEG circulation volume and pressure of absorber were helpful to mitigate the undesired effect. That is because 

higher pressure is good for absorption and higher TEG circulation is beneficial to carry more water. And the pressure of 

absorber played a greater role.   

The interaction effect between parameters on the response values is also worth to be discussed. From Figure 3 and Figure 

4 along with p-value in Table 5, the interaction effect between temperature of feed gas and pressure of absorber had 

significant influence on the water content. From Figure 3(b), the pressure had more influence on the water content when 

temperature was higher. While the interaction effect between flow rate of feed gas and temperature of feed gas had 

significant influence on the energy consumption. From Figure 4(a) the equivalent rise of flow rate resulted in more energy 

consumption at high temperature level than low temperature level. Apart from these two extremely significant interaction 

effects, other significant mutual effects also existed. Remarkable on water content were the flow rate and temperature of 

feed gas. Significant on energy consumption were temperature of feed gas and pressure, temperature of feed gas and TEG 

circulation rate, flow rate of feed gas and pressure, flow rate of feed gas and TEG circulation rate. Interaction effects 

between other parameters were negligible in this study.  
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Figure 3: Influence of factors on water content of product gas 
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Figure 4: Influence of factors on energy consumption 

  

Combined with Table 5, it can be concluded that, the degree of significance on the water content and the energy 

consumption for single factor, in an order from high to low, are X2> X3> X1> X4 and X2> X4> X1> X3 respectively. The 

degree of significance on the water content and the energy consumption for interaction effect, in an order from high to 

low, covers: X2 X3> X1 X2 and X1 X2> X2 X3> X2 X4> X1 X3> X1 X4, respectively (items whose significant degree p-value > 

0.05 were omitted).  

 

B. Optimization of parameters in dehydration process  

In the operation process, the appropriate setting of parameters for device is beneficial to ensure the dehydration plants 

operate more efficiently and economically. Based on the characteristics of the process, achieving parameter optimization 

with software can be instructive for field operation.  

In reality, once given the variation scales of parameters, the minimum consumption is definitely existent, so a convergent 

solution for the problem of the original nonlinear response surface model is guaranteed theoretically.  

Based on the analysis above, flow rate of feed gas, temperature of feed gas, pressure of absorber and TEG circulation 

volume rate were taken into consideration in the parameter setting optimization. Both flow rate of feed gas and 

temperature of feed gas are the conditions of feed gas. Flow rate of feed gas is usually uncontrollable in field, so its value 

was set 867 kmol/h (the same as initial setting value). While temperature of feed gas can be adjusted by additional water 

cooler. According to Eq.3 and the three-dimension graphs, the nonlinear relation exhibited between the four parameters 

and water content. To meet the water content requirement and obtain the minimum energy consumption simultaneously, 

Matlab was used in this paper to solve the Minimax Problem in parameter optimization by Nonlinear Programming.  

Here, the minimum energy consumption E was taken as the objective function, the variation range of each parameter was 

taken as linear constraint condition, while keeping the water content YH2O within 500×10-6 was regarded as the nonlinear 

constraint condition to meet the water content requirement.  
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Eq.6 was calculated with Matlab to obtain optimization. The comparison of parameter setting, water content and energy 

consumption before and after optimization are shown in Table 8.  

 

Table 8: Comparison of parameters and response values before and after optimization  

  X1, kmol/h  X2, ℃  X3, kPa  X4, L/h  YH2O, 10-

6  

E, kW  Energy saving 

rate, %  

Initial value  

Optimized value  

867  

867  

30  

20  

4000  

3611.3  

200  

140  

602  

334  

30.97  

20.51  
33.77  

 

Table 8 showed that, compared with the initial response values, the energy consumption decreased by 33.77% 

theoretically after optimization, and the water content was within the requirement(lower than initial water content) at the 

optimum parameters setting. The lower water content and lower energy consumption showed that, based on the explicit 

formulae, optimizing the parameter setting with mathematical software to improve the performance of CO2 dehydration 

process is feasible.  

 

IV. CONCLUSIONS  

According to the investigation of CO2 dehydration process, results showed that:   

1、 RSM model was significant manifest the single factor effects and interaction effects of parameters on energy 

consumption of the device.  

2、 With the assistance of BBD sample point design method, RSM Modeling could be performed by extracting 

quantitative data from a set of experiments and fitting them into mathematical equations.  

3、 Based on the regressed explicit formulae and constraint relation, using Matlab, the optimal energy consumption 

could be obtained by optimization of parameter setting theoretically.   

Given similar parameter setting adjustment and design problem widely exist in chemical process, analysis and 

optimization with RSM is a convenient method to put into practical engineering applications.  
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