The Standard Cosmological Model:Basic Geometric and Kinematic Features
DOI:
https://doi.org/10.61841/vpsn4w60Keywords:
standard cosmological model, Hubble distance, first and second horizons, second inflationAbstract
We present a brief history of the construction of models of the universe, followed by calculations of quantitative characteristics of basic geometric and kinematic properties of the Standard Cosmological Model ( CDM). Using the Friedmann equations of uniform space, we derive equations characterizing a CDM model that describes a universe corresponding to current observational data. The equations take into account the effects of radiation and ultra-relativistic neutrinos. It is shown that the universe at very early and late stages can be described to sufficient accuracy by simple formulas. Certain important moments of cosmic evolution are determined: the times when densities of the gravitational components of the universe become equal, when they contribute equally to the gravitational force, when the accelerating expansion of space begins, and several others. The dependences of different distances on redshift and the scale factor of space are derived. The distance to the sphere that expands with the speed of light (the Hubble distance), and its current and future acceleration, are found. Concepts of a horizon, second inflation, and second horizon are discussed. We consider the remote future of the universe and the opportunity, in principle, of connection with extraterrestrial civilizations.
References
Zeldovich, Ya.B.; Novikov, I.M. The Structure and Evolution of the sniverse. sniversity of Chicago Press, Chicago. 1983.
Narlikar, J.V. Introduction to Cosmology. Cambridge, Cambridge sniversity Press. 1993.
https://archive.org/details/introductiontoco0000narl/mode/2up
Misner, T.W.; Thorn, K.S.; Wheeler, J.A. Gravitation. San Francisco, Freeman. 1972.
https://archive.org/details/GravitationMisnerThorneWheeler/page/n1/mode/2up
Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York, John Wiley and Sons, Inc. 1972. https://archive.org/details/WeinbergS.GravitationAndCosmology..PrinciplesAndApplicationsOfTheGeneralTheory Of
Gorbunov, M.C.; Rubakov, V.A. Introduction to the Theory of the Early sniverse. The Theory of Hot Big Bang. M., sRSS. 2008.
Einstein, A. Mie Grundlage der allgemeine Relativistätstheorie. Ann. d. Phys. 1916, 354, 769. https://doi.org/10.1002/andp.19163540702
Einstein, A. Kosmologische Betrachtugen zur allgemainen Relativitatstheories. Sitsungsberichte der Preuss. Acad. Wiss. 1917, 142–152. (English translation: H.A.Lorents, A.Einstein, H.Minkowski, H.Weil. 1950. The principle of relativity. 177–188. Methuen, London. https://articles.adsabs.harvard.edu/pdf/1917SPAW 142E
Eddington, A. The Mathematical Theory of Relativity. Second edition. Cambridge. At the sniversity Press. 1924.
https://archive.org/details/mathematicaltheo00eddiuoft/page/n5/mode/2up
de Sitter, W. On Einstein’s theory of gravitation and its astronomical consequencies, Third paper. Monthly Notices Roy Astron. Soc. 1917, 78, 3–28.https://doi.org/10.1093/mnras/78.1.3
Friedmann, A. Über die Krümmung des Raumes. Zeitschrifts für Physik. 1922, 10, 377–386. https://doi.org/10.1007/BF01332580
Friedmann, A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrifts für Physik, 1924, 21, 326.https://doi.org/10.1007/BF01328280
Lemaître, G. sn universe homogéne de masse constante et de rayion croissante rendant compte de la vitesse radiale des nébuleses extragalactiques. Annales de la Société scientifique de Bruxelles. 1927, 47 A, 41. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 1931, 91, 483–490.https://articles.adsabs.harvard.edu/pdf/1927ASSB...47 49L
Lemaître, G. The expanding universe. Mon. Not. R. Astron. Soc. 1931, 91, 490–501.
https://doi.org/10.1093/mnras/91.5.490
Einstein, A. Grundgedanken und Probleme der Relativitátsthedorie. In "Nobelstiftelsen, Les Prix Nobel en 1921– 1922". Impremerie Royal, Stockholm. 1923.
Einstein, A. Zum kosmologischen Problem der allgemainen Relativitätstheorie. Sitzungsber. Preuss. Acad. Wiss., phys.-math. Kl., 1931, 235–237.https://doi.org/10.1002/3527608958.ch43
Hubble, E. A relation between distance and radial velocity among extragalactic nebulae. Proc. Nat. Acad. Sci. sSA,
, 15, 168.https://doi.org/10.1073/pnas.15.3.168
Sandage, A. Observational tests of world models. Ann. Rev. Astron. Astrophys. 1988, 26, 561–630.
https://doi.org/10.1146/annurev.aa.26.090188.003021
Sandage, A. Current problems in the extragalactic distance scale. Astrophys. J. 1958, 127, 513–527.
https://articles.adsabs.harvard.edu/pdf/1958ApJ...127..513S
Sandage, A.; Tammann, G.A. Steps towards the Hubble constant. VIII. The global value. Astrophys. J. 1982, 256, 339–345.https://articles.adsabs.harvard.edu/pdf/1982ApJ...256..339S
Sandage, A. The redshift-distance relation. II. The Hubble diagram and its scatter for first-ranked cluster galaxies: a formal value for ????0. Astrophys. J. 1972, 178, 1–24.https://articles.adsabs.harvard.edu/pdf/1972ApJ...178 1S
Hoyle, F.; Burbidge, G.; Narlikar, J.V. A Mifferent Approach to Cosmology. From a static universe through the big bang towards reality. Cambridge sniversity Press.
https://archive.org/details/differentapproac0000hoyl/mode/2up
Frieman, J.A.; Turner, M.S.; Huterer, M. Mark energy and accelerating universe. Annu. Rev. Astron. Astrophys.
, 46, 385–432.https://doi.org/10.1146/annurev.astro.46.060407.145243
Gliner, E.B. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Zhurn.
Experim. Theor. Fizik. 1965, 49, 542–548.http://jetp.ras.ru/cgi-bin/dn/e_022_02_0378.pdf
Guth, A. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. M. 1981, 23, 347–356.https://doi.org/10.1103/PhysRevM.23.347
Linde, A.M. The physics of elementary particles and inflationary cosmology. M. Nauka. 1990.
Riess, A.S.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038.https://iopscience.iop.org/article/10.1086/300499
Perlmutter, S.; et al. Measurements of Ω and ???? from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565– 586.
https://iopscience.iop.org/article/10.1086/307221
Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; et al. New constraints on Ω????, Ω????, and ???? from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 2003, 598, 102–137.https://iopscience.iop.org/article/10.1086/378560
Hinshaw, G.; Larson, M.; Komatsu, E.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameters results. Astrophys. J. Suppl. Series. 2013, 208, 19.
https://iopscience.iop.org/article/10.1088/0067-0049/208/2/19
Abbott, T. M. C.; Allam, S.; Andersen, P.; et al. First Cosmology Results using Type Ia Supernovae from the Mark Energy Survey: Constraints on Cosmological Parameters. Astrophys. J. Let. 2019, 872,
L30.https://iopscience.iop.org/article/10.3847/2041-8213/ab04fa
Macaulay, E. R.; Nichol, C.; Bacon, M.; et al. MES Collaboration. First Cosmological Results using Type Ia Supernovae from the Mark Energy Survey: Measurement of the Hubble Constant. Mon. Not. R. Astron. Soc. 2019, 486, 2184–2196.
https://doi.org/10.1093/mnras/stz978
Nagirner, M. I.; Turichina, M. G. The effect of neutrino mass in cosmology. Astrophysics, 2019, 62, 108–128.
https://doi.org/10.1007/s10511-019-09568-5
McCrea, W. H. Observable relations in relativistic cosmology. Zeitschrift für Astrophysik. 1935, 9, 290–314.
https://articles.adsabs.harvard.edu/pdf/1935ZA......9..290M
Harrison, E. The redshift-distance and velocity-distance laws. Astrophys. J. 1993, 403, 28–31.
https://articles.adsabs.harvard.edu/pdf/1993ApJ...403 28H
Alpher, R. A.; Herman, R. C. The Origin and Abundance Mistribution of the Elements. Ann. Rev. Nucl. Astropart.
Sci. 1953, 2, 1–40.https://doi.org/10.1146/annurev.ns.02.120153.000245
Sandage, A. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 1962, 136, 319–333.https://articles.adsabs.harvard.edu/pdf/1962ApJ...136..319S
McVittie, G. C. Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Meceleration of Selected Expanding sniverses. Astrophys. J. 1962, 136, 334–
https://articles.adsabs.harvard.edu/pdf/1962ApJ...136..334M
Loeb, A. Mirect measurement of cosmological parameters from the cosmic deceleration of extragalactic objects.
Astrophys. J. 1998, 499, L111–L114.https://iopscience.iop.org/article/10.1086/311375
Liske, J.; et al. Cosmic dynamics in the era of Extremely Large Telescopes. Mon. Not. R. Astron. Soc. 2008, 386, 1192–1218.https://doi.org/10.1111/j.1365-2966.2008.13090.x
Rindler, W. Visual horizons in world-models. Mon. Not. R. Astron. Soc. 1956, 116, 662–677.
https://doi.org/10.1093/mnras/116.6.662
Margalef-Bentabol, B.; Margalef-Bentabol; J.; Cepa, J. Evolution of the cosmologycal horizons in a universe with coutably infinitely many state equations. Journal of Cosmology and Astroparticle Physics. 2013, 015
https://iopscience.iop.org/article/10.1088/1475-7516/2013/02/015
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dimitrij Nagirner, Svetlana Jorstad, Andrey V. Dementyev

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.