The Standard Cosmological Model:Basic Geometric and Kinematic Features

Authors

  • Dimitrij Nagirner Astronomy Department, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg, Russia
  • Svetlana Jorstad Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA, 02215, USA
  • Andrey V. Dementyev Astronomy Department, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg, Russia

DOI:

https://doi.org/10.61841/vpsn4w60

Keywords:

standard cosmological model, Hubble distance, first and second horizons, second inflation

Abstract

We present a brief history of the construction of models of the universe, followed by calculations of quantitative characteristics of basic geometric and kinematic properties of the Standard Cosmological Model ( CDM). Using the Friedmann equations of uniform space, we derive equations characterizing a CDM model that describes a universe corresponding to current observational data. The equations take into account the effects of radiation and ultra-relativistic neutrinos. It is shown that the universe at very early and late stages can be described to sufficient accuracy by simple formulas. Certain important moments of cosmic evolution are determined: the times when densities of the gravitational components of the universe become equal, when they contribute equally to the gravitational force, when the accelerating expansion of space begins, and several others. The dependences of different distances on redshift and the scale factor of space are derived. The distance to the sphere that expands with the speed of light (the Hubble distance), and its current and future acceleration, are found. Concepts of a horizon, second inflation, and second horizon are discussed. We consider the remote future of the universe and the opportunity, in principle, of connection with extraterrestrial civilizations.

Author Biographies

  • Dimitrij Nagirner, Astronomy Department, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg, Russia

    Professor, Astronomy Department, St. Petersburg State University

  • Svetlana Jorstad, Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA, 02215, USA

    Senior Research Scientist, Institute for Astrophysical Research

References

Zeldovich, Ya.B.; Novikov, I.M. The Structure and Evolution of the sniverse. sniversity of Chicago Press, Chicago. 1983.

Narlikar, J.V. Introduction to Cosmology. Cambridge, Cambridge sniversity Press. 1993.

https://archive.org/details/introductiontoco0000narl/mode/2up

Misner, T.W.; Thorn, K.S.; Wheeler, J.A. Gravitation. San Francisco, Freeman. 1972.

https://archive.org/details/GravitationMisnerThorneWheeler/page/n1/mode/2up

Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York, John Wiley and Sons, Inc. 1972. https://archive.org/details/WeinbergS.GravitationAndCosmology..PrinciplesAndApplicationsOfTheGeneralTheory Of

Gorbunov, M.C.; Rubakov, V.A. Introduction to the Theory of the Early sniverse. The Theory of Hot Big Bang. M., sRSS. 2008.

Einstein, A. Mie Grundlage der allgemeine Relativistätstheorie. Ann. d. Phys. 1916, 354, 769. https://doi.org/10.1002/andp.19163540702

Einstein, A. Kosmologische Betrachtugen zur allgemainen Relativitatstheories. Sitsungsberichte der Preuss. Acad. Wiss. 1917, 142–152. (English translation: H.A.Lorents, A.Einstein, H.Minkowski, H.Weil. 1950. The principle of relativity. 177–188. Methuen, London. https://articles.adsabs.harvard.edu/pdf/1917SPAW 142E

Eddington, A. The Mathematical Theory of Relativity. Second edition. Cambridge. At the sniversity Press. 1924.

https://archive.org/details/mathematicaltheo00eddiuoft/page/n5/mode/2up

de Sitter, W. On Einstein’s theory of gravitation and its astronomical consequencies, Third paper. Monthly Notices Roy Astron. Soc. 1917, 78, 3–28.https://doi.org/10.1093/mnras/78.1.3

Friedmann, A. Über die Krümmung des Raumes. Zeitschrifts für Physik. 1922, 10, 377–386. https://doi.org/10.1007/BF01332580

Friedmann, A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrifts für Physik, 1924, 21, 326.https://doi.org/10.1007/BF01328280

Lemaître, G. sn universe homogéne de masse constante et de rayion croissante rendant compte de la vitesse radiale des nébuleses extragalactiques. Annales de la Société scientifique de Bruxelles. 1927, 47 A, 41. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Astron. Soc. 1931, 91, 483–490.https://articles.adsabs.harvard.edu/pdf/1927ASSB...47 49L

Lemaître, G. The expanding universe. Mon. Not. R. Astron. Soc. 1931, 91, 490–501.

https://doi.org/10.1093/mnras/91.5.490

Einstein, A. Grundgedanken und Probleme der Relativitátsthedorie. In "Nobelstiftelsen, Les Prix Nobel en 1921– 1922". Impremerie Royal, Stockholm. 1923.

Einstein, A. Zum kosmologischen Problem der allgemainen Relativitätstheorie. Sitzungsber. Preuss. Acad. Wiss., phys.-math. Kl., 1931, 235–237.https://doi.org/10.1002/3527608958.ch43

Hubble, E. A relation between distance and radial velocity among extragalactic nebulae. Proc. Nat. Acad. Sci. sSA,

, 15, 168.https://doi.org/10.1073/pnas.15.3.168

Sandage, A. Observational tests of world models. Ann. Rev. Astron. Astrophys. 1988, 26, 561–630.

https://doi.org/10.1146/annurev.aa.26.090188.003021

Sandage, A. Current problems in the extragalactic distance scale. Astrophys. J. 1958, 127, 513–527.

https://articles.adsabs.harvard.edu/pdf/1958ApJ...127..513S

Sandage, A.; Tammann, G.A. Steps towards the Hubble constant. VIII. The global value. Astrophys. J. 1982, 256, 339–345.https://articles.adsabs.harvard.edu/pdf/1982ApJ...256..339S

Sandage, A. The redshift-distance relation. II. The Hubble diagram and its scatter for first-ranked cluster galaxies: a formal value for ????0. Astrophys. J. 1972, 178, 1–24.https://articles.adsabs.harvard.edu/pdf/1972ApJ...178 1S

Hoyle, F.; Burbidge, G.; Narlikar, J.V. A Mifferent Approach to Cosmology. From a static universe through the big bang towards reality. Cambridge sniversity Press.

https://archive.org/details/differentapproac0000hoyl/mode/2up

Frieman, J.A.; Turner, M.S.; Huterer, M. Mark energy and accelerating universe. Annu. Rev. Astron. Astrophys.

, 46, 385–432.https://doi.org/10.1146/annurev.astro.46.060407.145243

Gliner, E.B. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Zhurn.

Experim. Theor. Fizik. 1965, 49, 542–548.http://jetp.ras.ru/cgi-bin/dn/e_022_02_0378.pdf

Guth, A. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. M. 1981, 23, 347–356.https://doi.org/10.1103/PhysRevM.23.347

Linde, A.M. The physics of elementary particles and inflationary cosmology. M. Nauka. 1990.

Riess, A.S.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038.https://iopscience.iop.org/article/10.1086/300499

Perlmutter, S.; et al. Measurements of Ω and ???? from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565– 586.

https://iopscience.iop.org/article/10.1086/307221

Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; et al. New constraints on Ω????, Ω????, and ???? from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 2003, 598, 102–137.https://iopscience.iop.org/article/10.1086/378560

Hinshaw, G.; Larson, M.; Komatsu, E.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameters results. Astrophys. J. Suppl. Series. 2013, 208, 19.

https://iopscience.iop.org/article/10.1088/0067-0049/208/2/19

Abbott, T. M. C.; Allam, S.; Andersen, P.; et al. First Cosmology Results using Type Ia Supernovae from the Mark Energy Survey: Constraints on Cosmological Parameters. Astrophys. J. Let. 2019, 872,

L30.https://iopscience.iop.org/article/10.3847/2041-8213/ab04fa

Macaulay, E. R.; Nichol, C.; Bacon, M.; et al. MES Collaboration. First Cosmological Results using Type Ia Supernovae from the Mark Energy Survey: Measurement of the Hubble Constant. Mon. Not. R. Astron. Soc. 2019, 486, 2184–2196.

https://doi.org/10.1093/mnras/stz978

Nagirner, M. I.; Turichina, M. G. The effect of neutrino mass in cosmology. Astrophysics, 2019, 62, 108–128.

https://doi.org/10.1007/s10511-019-09568-5

McCrea, W. H. Observable relations in relativistic cosmology. Zeitschrift für Astrophysik. 1935, 9, 290–314.

https://articles.adsabs.harvard.edu/pdf/1935ZA......9..290M

Harrison, E. The redshift-distance and velocity-distance laws. Astrophys. J. 1993, 403, 28–31.

https://articles.adsabs.harvard.edu/pdf/1993ApJ...403 28H

Alpher, R. A.; Herman, R. C. The Origin and Abundance Mistribution of the Elements. Ann. Rev. Nucl. Astropart.

Sci. 1953, 2, 1–40.https://doi.org/10.1146/annurev.ns.02.120153.000245

Sandage, A. The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 1962, 136, 319–333.https://articles.adsabs.harvard.edu/pdf/1962ApJ...136..319S

McVittie, G. C. Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Meceleration of Selected Expanding sniverses. Astrophys. J. 1962, 136, 334–

https://articles.adsabs.harvard.edu/pdf/1962ApJ...136..334M

Loeb, A. Mirect measurement of cosmological parameters from the cosmic deceleration of extragalactic objects.

Astrophys. J. 1998, 499, L111–L114.https://iopscience.iop.org/article/10.1086/311375

Liske, J.; et al. Cosmic dynamics in the era of Extremely Large Telescopes. Mon. Not. R. Astron. Soc. 2008, 386, 1192–1218.https://doi.org/10.1111/j.1365-2966.2008.13090.x

Rindler, W. Visual horizons in world-models. Mon. Not. R. Astron. Soc. 1956, 116, 662–677.

https://doi.org/10.1093/mnras/116.6.662

Margalef-Bentabol, B.; Margalef-Bentabol; J.; Cepa, J. Evolution of the cosmologycal horizons in a universe with coutably infinitely many state equations. Journal of Cosmology and Astroparticle Physics. 2013, 015

https://iopscience.iop.org/article/10.1088/1475-7516/2013/02/015

Downloads

Published

2025-05-23

How to Cite

Nagirner, D., Jorstad, S., & Andrey V. Dementyev. (2025). The Standard Cosmological Model:Basic Geometric and Kinematic Features. Journal of Advance Research in Applied Science (ISSN 2208-2352), 11(1), 18-43. https://doi.org/10.61841/vpsn4w60