Addition of 1-Hydroxyalkyl Free Radicals to Unsolvated Formaldehyde in Alcohol–Formaldehyde Solutions with Nonbranched-Chain Formation of 1,2-Alkanediols
DOI:
https://doi.org/10.53555/nnas.v3i10.646Keywords:
nonbranched-chain process, free formaldehyde, 1 -hydroxyalkyl radical, formyl radical, competing reaction, equationAbstract
A mechanism of the initiated nonbranched-chain process of forming 1,2-alkanediols and carbonyl compounds in alcohol–formaldehyde systems is suggested. The quasi-steady-state treatment is used to obtain kinetic equations that can describe the nonmonotonic (with a maximum) dependences of the formation rates of the products on the concentration of free unsolvated formaldehyde. The experimental concentration of the free unsolvated form of formaldehyde are given at the different temperatures, solvent permittivity, and total concentrations of formaldehyde in water and alcohols. An empirical equation for calculating the free formaldehyde concentration in alcohol–formaldehyde (including water/ethanediol–formaldehyde) systems at various temperatures and total formaldehyde concentrations and an equation for evaluating solvent concentrations in these systems were derived.
References
S. K. Ogorodnikov, Formal'degid (Formaldehyde), Khimiya, Leningrad, 1984
M. M. Silaev, A. V. Rudnev, and E. P. Kalyazin, “Formaldehyde. III. Concentration of Free Formaldehyde as a Function of Temperature, Polarity of Solvents, and Total Concentration of Formaldehyde in Solution”, Zhurnal Fizicheskoi Khimii, 1979, vol. 53, no. 7, pp. 1647–1651
L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat'ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, “Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu”(“Bond Dissociation Energies, Ionization Potentials, and Electron Affinity”), V. N. Kondrat'ev, Editor, Nauka, Moscow, 1974
S. W. Benson, “Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters”, 2nd Edition, Wiley, New York, 1976
J. B. Pedley, R. D. Naylor, and S. P. Kirby, “Thermochemical Data of Organic Compounds”, 2nd Edition, Chapman & Hall, London, 1986
Yu. D. Orlov, Yu. A. Lebedev, and I. Sh. Saifullin, “Termokhimiya organicheskikh svobodnykh radikalov” (“Thermochemistry of Organic Free Radicals”), A. M. Kutepov, Editor, Nauka, Moscow, 2001
M. M. Silaev, “Simulation of Nonbranched Chain Processes for Producing 1,2-Alkanediols in Alcohol–Formaldehyde Systems”, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, vol. 41, no. 4, pp. 379–384, English Translation in: Thoretical Foundations Chemical Engineering, 2007, vol. 41, no. 4, pp. 357–361
Oyama, M., “A Free-Radical Reaction of Primary and Secondary Alcohols with Formaldehyde”, The Journal of Organic Chemistry, 1965, vol. 30, no. 7, pp. 2429–2432
G. I. Nikishin, D. Lefor, and E. D. Vorob’ev, “Free Radical Reaction of Primary Alcohols with Formaldehyde”, Izvestiya Akademii Nauk SSSR, Ser. Khimiya, 1966, no. 7, pp. 1271–1272
W. H. Urry, F. W. Stacey, E. S. Huyser, and O. O. Juveland, “The Peroxide- and Light-Induced Additions of Alcohols to Olefins”, Journal of the American Chemical Society, 1954, vol. 76, no. 2, pp. 450–455
M. B. Dzhurinskaya, A. V. Rudnev, and E. P. Kalyazin, “High Temperature UV Photolysis of Formaldehyde in Liquid Methanol”, Vestnik Moskovskogo Universiteta, Ser. 2: Khimiya, 1984, vol. 25, no. 2, pp. 173–176
E. P. Kalyazin, E. P. Petryaev, and O. I Shadyro, “Reaction between Oxyalkyl Radicals and Aldehydes”, Zhurnal Organicheskoi Khimii, 1977, vol. 13, no. 2, pp. 293–295
M. M. Silaev and L. T. Bugaenko, “Mathematical Simulation of the Kinetics of Radiation Induced Hydroxyalkylation of Aliphatic Saturated Alcohols”, Radiation Physics and Chemistry, 1992, vol. 40, no. 1, pp. 1–10
S. Ya. Pshezhetskii, A. G. Kotov, V. K. Milinchuk, V. A. Roginskii, and V. I. Tupikov, “EPR svobodnykh radikalov v radiatsionnoi khimii” (“ESR of Free Radicals in Radiation Chemistry”), Khimiya, Moscow, 1972
L. Bateman, “Olefin Oxidation”, Quarterly Reviews, 1954, vol. 8, no. 2, pp. 147–167
M. M. Silaev, “Simulation of the Nonbranched-Chain Addition of Saturated Free Radicals to Alkenes and Their Derivatives Yielding 1:1 Adducts”, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2007, vol. 41, no. 3, pp. 280–295, English Translation in: Theoretical Foundations of Chemical Engineering, 2007, vol. 41, no. 3, pp. 273–278
M. M. Silaev, “Estimating the Solvent Concentration in Formaldehyde Solutions at Various Temperatures”, Zhurnal Fizicheskoy Khimii, 1993, vol. 67, no. 9, p. 1944
M. M. Silaev, L. T. Bugaenko, and E. P. Kalyazin, “On the Possibility of Adequately Estimating of the Rate Constants for the Reaction of Hydroxyalkyl Radicals with Each Other Using the Self-Diffusion Coefficients or Viscosities of the Corresponding Alcohols”, Vestnik Moskovskogo. Univiversiteta, Ser. 2: Khimiya, 1986, vol. 27, no. 4, pp. 386–389
J. F. Walker, Formaldehyde, Reinhold, New York, 1953, English Translation under the title Formal’degid, Goskhimizdat, Moscow, 1957, p. 106
O. I. Shadyro, “Radiation-chemical Conversions of Aldehydes in Various Systems”, Ph.D. Thesis (Chemistry), Belarusian State University, Minsk, 1975
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.