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Abstract: -  
Several applications are based on the assessment of a linear model including a variable y to Predictors x1, x2,..,xp. It often 

occurs that the predictors are collinear which results in a high instability of the model obtained by means of multiple 

linear regression using least squares estimation. Several alternative methods have been proposed in order to tackle this 

problem. Among these methods Ridge Regression, Principal Component Regression. We discuss a third method called 

Latent Root Regression. This method depends on the Eigen values and Eigen vectors of the matrix A’A, where A is the 

matrix of y and x1, x2,..,xp . We introduce some properties of latent root regression which give new insight into the 

determination of a prediction model. Thus, a model may be determined by combining latent root estimators in such a way 

that the associated mean squared error is minimized. The method is illustrated using three real data sets. Namely: 

Economical, Medical and Environmental data . According to applications, our new estimators depending on the Latent 

Root Regression have better performances in the sense of MSE in most of the situations.    
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1- Multiple Linear Regression Model   

Any standard study of a particular phenomenon requires the identification of the factors influencing this phenomenon and 

the formulation of the relationship between these factors in the form of a model that expresses them. The model may 

represent one or several equations. In terms of a single equation, it may be simple or may be multiple. Common forms of 

use include a linear form that takes a mathematical form in writing and includes more than one explanatory variables. This 

model will be used in this research and the general formula for this the model is (Yan & Gang Su, 2009):  

 yi = β0 + β1xi1 + β2xi1 + … + βpxik + ui 

Where:  

yi:The value of the response variable, i=1,2,3,…,n; n is the size of sample.   

βj:Regression parameters, j=0,1,2,…,p, p is number of explanatory variables.  

xij:The explanatory variable j for observation i, i=1,2,3,…,n; j=1,2,…,p.  

ui: The random error of  observation i, i=1,2,3,…,n. The above equation 

can be expressed in matrix form as:  

              (1) 

Where:  

y: is (n×1) vector of observations of the response variable.  

 
X: is (n×k); k=p+1, matrix of observations of the explanatory variables whose first column contains the values of the 

correct one.  

β:is (k×1) vector of the parameters to be estimated.  

u:is (n×1) vector of random errors.  

 

In order to estimate the parameters of the model and to ensure that the estimations have desirable properties, there are 

certain hypotheses that must be met. These assumptions are(Chatterjee& Price, 2000):  

1. The relationship between the variables involved is a linear relationship and this means that the variable y is determined 

as a linear structure of independent variables, X and random variable u.  

2. The variance of the random error is σ2, and         

cov(ui, uj) = 0     for i  j Where i, j = 1,2,3, … , n 

 

3. The random error is normal with mean zero and variance σ2.  

4. The matrix X is distributed separately from u, so the covariance is zero, ie:  

cov(ui, Xj) = 0      Where i = 1,2,3, … , n  , j = 1,2,3, … , p 

 

5. This assumption is concerned with the rank of matrix X where we assume that:  

 Rank(X) = p > 𝑛     

 This assumption includes:  

- The number of observations should be greater than the number of estimated parameters.  

- No multicollinearity between the values of the explanatory variables.  

  

2- Least Squares Method  

This method is one of the most widely used methods for estimating the parameters of the linear regression model. The 

least squares estimate of the regression parameters in this method is (Kutner et al., 2005):  

… . (2) 

 

Here are the properties of this method (Draper & Smith, 1981) (Fisher, 1981&Mason) and (Gunst& Mason, 1980):  

1. Linearity: the estimated parameters in this method are linear in terms of the response variables: 

 
 

2. Unbiased: That is, the expected value of the estimated parameters is equal to its real value:  

 
 

3. Variance: The variance of the estimated parameters is minimum  

 … . (3) 

Where  

 

3-The Concept of the Multicollinearity in the Regression Model  

Multicollinearity is one of the problems that occur in many cases due to the existence of a relationship between the 

explanatory variables. The existence of the complete multicollinearity between the variables leads to making the matrix 
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(X′X) not of full rank, ie, its determinant is zero. Thus, it is difficult to find the inverse of this matrix, which means that 

the regression parameters cannot be estimated using the Least Squares method. The existence of an incomplete but 

powerful multicollinearity leads to the amplification of the variance and thus the acquisition of inaccurate capabilities 

(Dounald, 1987) and (Chatterjee et al., 2000).  

  

4- Detecting Multicollinearity  

Multicollinearity between the explanatory variables can be detected by many methods (Draper & Smith, 1981) and (Fisher, 

1981&Mason) and (Gunst& Mason, 1980):  

1. The correlation coefficients matrix: Notice the elements are not diagonal in the correlation matrix(X′X) it is a simple 

indicator of inference on the existence of multicollinearity between explanatory variables, where the greater the value 

of these elements than zero this indicates the existence of relations between these variables, whether those relations 

are positive or negative.  

2. Determinant of matrix:  The determinant value of the matrix ranges from zero to one, when it is zero (|X′X| = 0) this 

indicates the existence of complete multicollinearity between the variables. On the other hand, if it is one (|X′X| = 1) 

this indicates the nonexistence of multicollinearity. When the value of the determinant is between zero and one there 

is a multicollinearity of certain degree, that is when (1>|X′X|>0), the multicollinearity exists and increases whenever 

the determinant close to zero (Mason, 1986). |X′X| can be calculated using its latent values and through the following 

equation:  

 
 

Where i is latent values for (X′X) matrix, when there is a multicollinearity a number of latent values will be small 

or close to zero leading to a small value for the matrix determinant.  

 

3. Latent values for (X′X) matrix: The calculation of the latent values and vectors is a multicollinearity detection method, 

if the value of one of the latent values is equal to zero this indicates the presence of complete multicollinearity which 

indicates the difficulty or impossibility of finding the estimators of the Least Squares because of impossibility of 

finding the inverse matrix since the determinant will be zero. Latent values are also used to calculate two types of 

auxiliary statistics in the detection of multicollinearity, they are(Kutner et al., 2005 ):  

 

• Condition index (CI): It is calculated according to the relationship:  

 
Where:   

λmax: Is the maximum latent value.  

λj: 𝑖𝑠 𝑡ℎ𝑒 jth latent value.  

 

• Condition number: It is calculated according to the relationship:  

  
Where:   

λmax: Is the maximum latent value.  

λmin: Is the minimum latent value (Belsley et al., 1980 ) proposed that if CN values between 30 and 100 this was a sign of 

very high multicollinearity .  

  

5- Solution of Multicollinearity  

There are several methods proposed to minimize the effect of multicollinearity, Such as (Fisher & Mason, 1981):  

1. Delete the explanatory variables that are associated with other variables in order to get rid of the effects of this link 

and this deletion process according to certain criteria proposed to delete the specific variables.  

2. Add new data to the original data.  

3. Use biased estimation methods.  

  

6- Latent Roots Method  

This method was proposed in 1973 by Hawkins, the idea of this method is to find the latent roots of the correlation matrix 

and then to exclude the roots that are not important in the prediction process. The following is a detailed explanation of 

this method (Mason, 1986):  

Correlation matrix is obtained by multiplying the transpose matrix (A) and the same matrix ie:  

R = A′A  

Where:  

A: Is the standardized information matrix which contains the standardized values of the response variable and the 

standardized values of the explanatory variables:  
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Where 

 
 

R: the correlation matrix between all variables, it is as follows: 

 
Latent roots latent values and latent vectors, are obtained according to the following formula:   

 
The estimation of the regression parameters vector by Least square Method that based on the  

                  ……(4) 

To find the Latent Root Estimators, all the values and vectors that are not significant in the prediction are deleted from the 

equation (4), the roots that meet the following conditions are deleted: 

 
 

The remaining latent roots are less thanor equal to p, denoted by q, and estimated by the Latent Root Method are as 

follows: 

                                       ……(5) 

 

Latent Root estimators have the following properties: 

1.Bias: The Latent Root estimator is biased and its bias is: 

                        …..(6) 

2. The variance: The variance of the Least Squares estimators in terms of latent roots is: 

                              ……(7) 

 

The variance of the latent Root estimators is  

                     ……(8) 
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The variance of the ith estimators is  

 
3.Mean Squares Error: Since the Latent Root estimator is biased, this makes the mean squares error as follows: 

 

 

Basilevsky  in  1994  suggested  a  approximation  of  the  mean  squares  error  for  the  Latent Root estimator as: 

                    ……. (9) 

 

7- Application Part  

Two sets of data are analyzed using the theoretical part. These two sets are: (Pasha & Ali Shah, 2004). This group of set 

consists of five variables that will be explained later. The second group of set (Al-Saffar, 2016) Consists of four 

explanatory variables.  

 

7-1 Group One  

These data were used by (Pasha & Ali Shah, 2004), where the number of observations are 150 , the independent variable 

(y) is the number of  persons employed (Million) and five dependent variables that are believed to affect them were:  

X1  Land Cultivated (Million Hectors)  

 X2  Inflation Rate (%)  

X3  Number of Establishment  

X4 Population (Million)  

X5  

Literacy Rate (%)  

 

 

7-1-1 Correlation Matrix  

The correlation matrix was found as follows:  

Table (1): The simple correlation coefficient between the explanatory variables and the independent variable  

  Y  X1  X2  X3  X4  X5  

Y  1  0.9731  0.7118  0.9437  0.993  0.9572  

X1  0.9731  1  0.6635  0.9427  0.9761  0.9564  

X2  0.7118  0.6635  1  0.659  0.729  0.6813  

X3  0.9437  0.9427  0.659  1  0.9633  0.8672  

X4  0.993  0.9761  0.729  0.9633  1  0.9506  

X5   0.9572  0.9564  0.6813  0.8672  0.9506  1 

  

7-1-2 Finding Latent Roots and Latent Vectors:  

The Latent Roots and Latent Vectors of the Correlation Matrix were found using a program written in the Matlab language, 

as follows:  

 
 

Journal of Advance Research in Computer science and Engineering   (ISSN: 2456-3552)

Vol. 4 No. 12 (2017) 5



7-1-3 Detection of Multicollinearity  

The following table (table 2) gives the values of the latent roots and vectors for this data set .It also checks the 

multicollinearity between the variables according to the following conditions:  

λj < 1 𝑎𝑛𝑑 |γ0j| < 0.5   𝑓𝑜𝑟      𝑗 = 0,1,2, … , 𝑝  

 

 Table (2): Test results   

i  λ𝑖  γ0i  conditions  

0  0.0037  0.5111  One holds  

1  0.0188  -0.4235  Two holds  

2  0.0277  0.5999  One holds  

3  0.1346  0.0549  Two holds  

4  0.4597  0.1169  Two holds  

5  5.3555  0.4276  One holds  

The above table shows that three values satisfy the two conditions. This means that there is a multicollinearity between 

these variables, so the Latent Root estimators and its variances will depend only on the remaining three values i.e q = 3.  

 

7-1-4 Estimation of the Regression Parameters   

The values of the regression parameters are estimated using Ordinary Least Squares equation (2). The following table 

(Table 3) gives the values of the estimated regression parameters, variances and their significances:  

 

Table (3): Estimators, variances and the t- test values of the regression coefficients in the Least Squares  

 

 
 

We see from the above table that only variable four is significant. Using Latent Root method equation (5), the following 

table (Table 4) gives the values of the estimated regression parameters ,variances and their significances:  

 

Table (4): Estimators, variances and the t- test values of the regression coefficients in the Latent Root  

 
We see from the above table that only variable one is not significant.  

 

7-1-5 Estimating the Mean Squares Error (MSE)  

MSE is estimated for the two methods: Ordinary Least Squares according to equation (4) and Latent Root method 

according to equation (9) as in table 5:  

 

Table (5): MSE for Ordinary Least Squares and the Latent Roots before deletion  

The method  σ  Part1  Part2  MSE  R2  

Least Squares  0.022  0.0746  0  0.0746  98.94%  

Latent Roots  0.0232  0.0392  0.0137  0.0529  98.82%  

 

From the above table, we note that the value of the MSE in the Latent Root method is lower than that in the Least Squares 

method as well as the value of R2.  

The following table shows the MSE values and the determination coefficient for each of the two methods after ignoring 

the non-significant variables:  

 

Table (6): MSE for the Least Squares and Latent Roots after deletion  

The method  σ   MSE R2  

Least Squares  0.0232  0.0005386  98.6%  

Latent Roots  0.0216  0.0509  98.93%  
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From the above table it can be said that the estimated model using the Latent Root method is better than the estimated 

model in the Least Squares method taking in consideration the number of significant variables for both methods  although 

the MSE is larger than the MSE for the Least Squares method .   

 

7-1-6 The Estimated Regression Equation  

After deleting the variables that are not important in the prediction process, the estimated regression equation in the Latent 

Roots method is:  

 
 

7-2 Second Group  

These data were used by (Al-Saffar, 2016), where the number of observations 26 and the independent variable (y) in the 

study is the size of Carbon Dioxide Emissions (Metric tons)  and four dependent variables that are believed to affect them 

were :  

X1 Industrial Growth.  

X2 Total Population.  

X3 Value of Foreign Direct Investment.  

X4 Industrial Energy Used  

 

7-2-1 Correlation Matrix  

The correlation matrix was found as follows:  

 

Table (7): The simple correlation coefficient between the explanatory variables and the independent variable  

  Y  X1  X2  X3  X4  

Y  1  0.723  -0.7753  -0.6956  -0.6145  

X1  0.723  1  -0.8697  -0.4858  -0.5746  

X2  -0.7753  -0.8697  1  0.6301  0.8448  

X3  -0.6956  -0.4858  0.6301  1  0.5167  

X4   -0.6145  -0.5746  0.8448  0.5167  1 

 

7-2-2 Finding Latent Roots and Latent Vectors:  

The Latent Roots and Latent Vectors of the Correlation Matrix were found using a program written in the Matlab language, 

as follows:  

 
7-2-3 Detection of Multicollinearity  

The following table (table 8) gives the values of the latent roots and vectors for this data set .It also checks the 

multicollinearity between the variables according to the following conditions:  

λj < 1          and    |γ0j| < 0.5   for      j = 0,1,2, … , p  

    

Table (8): Test results for Latent Roots  

i  λ𝑖  γ0i  conditions  

0  0.0358  -0.0105  Two holds  

1  0.2219  0.8058  One holds   

2  0.4508  0.2844  Two holds  

3  0.5791  0.2409  Two holds  

4  3.7124  -0.4601  One holds  

 

The above table shows that three values satisfy the two conditions. This means that there is a multicollinearity between 

these variables, so the Latent Root estimators and its variances will depend only on the remaining two values i.e q = 2. 7- 
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2-4 Estimation of Regression Parameters Values  

The values of the regression parameters are estimated using Ordinary Least Squares equation (2). The following table 

(Table 9) gives the values of the estimated regression parameters, variances and their significances:  

 

Table (9): Estimators, variances and the t- test values of the regression coefficients in the Least Squares    

 
 

We see from the above table that only variable three is significant. Using Latent Root method equation (5), the following 

table (Table 10) gives the values of the estimated regression parameters, variances and their significances:  

     

Table (10): Estimators, variances and the t- test values of the regression coefficients in the Latent Root   

 
We see from this table (table 10) that all variables are significant.  

 

7-2-5 Estimating the Mean Squares Error (MSE)  

MSE is estimated for the two methods: Ordinary Least Squares according to equation (4) and Latent Root method 

according to equation (9) as in table 11:  

 

Table (11): MSE for Ordinary Least Squares and the Latent Roots before deletion  

The method  σ  Part1  Part2  MSE  R2  

Least Squares  0.1208  0.4732  0  0.4732  69.38%  

Latent Roots  0.1264  0.0056  0.0001133  0.0057  66.47%  

 

From the above table, we note that the value of the MSE in the Latent Root method is lower than that in the Least Squares 

method as well as the value of R2.  

The following table shows the MSE values and the determination coefficient for each of the two methods after ignoring 

the non-significant variables:  

 

Table (12): MSE for the Least Squares and Latent Roots after deletion  

The method  σ   MSE R2  

Least Squares  0.1467  0.0215  48.38%  

Latent Roots  0.1264  0.0057  66.47%  

From the above table it can be said that the estimated model using the Latent Root method is better than the estimated 

model using Least Squares method depending on the MSE criterion.  

  

7-2-6 The Estimated Regression Equation  

After deleting all the variables that are not important in the prediction process, the estimated regression equation in the 

Latent Roots method is:  
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