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Abstract: - 
Long established on stationary devices like traditional personal computers, sensor-enabled intelligent tutoring system 

(ITS) technology on mobile computing devices (e.g. tablets, smartphones) hope to deliver a personalized tutoring 

experience tailored to student affect and educational state anywhere, anytime.  To achieve these goals, sensor-enabled 

ITS must overcome technology changes introduced by the mobility of devices such as tablets and smartphones.  After a 

brief contextual presentation and identification of the sensor-enabled ITS technology & research gaps on mobile 

computing devices, this article discusses opportunities and challenges of the mobile-computing device and proposes a 

sensor-enabled ITS prototype for mobile devices.  
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I. INTRODUCTION  

Analysts expect that 2016 shipments of mobile computing devices (e.g. tablets, smartphones) to swamp traditional PC  

shipments nearly ten-fold, 2,239 million to 333 million [1].  But are learning system application developers taking full 

advantage of the potential mass market?  Intelligent Tutoring Systems (ITS) attempt to provide instruction to individual 

users without the aid of a human instructor [2, p. 2], but Wu et al [3, p. 823] meta-analysis of 164 mobile learning studies 

between 2003 and 2010 indicated that 58% of the ITS and related learning applications on mobile devices focus simply 

on improving ‘effectiveness’ of learning with no mention of the use of the sensors that exist on mobile devices.  The clear 

inference is that mobile device ITS applications lag far behind other applications (i.e. text messaging, games, Skype, etc) 

in the use of sensors (i.e. cameras, gesture recognition, GPS, etc) in their applications to respond to the individual user.  

In further contrast, ITS on personal computers (PC) utilize mobile sensors far more than mobile devices do.  Specifically, 

ITS on PC’s seek to determine the level of student’s mastery of curriculum [2, p. 2] often employing sensors and artificial 

intelligence to infer student mood, affect and engagement so that ITS instruction may be uniquely tailored to a given 

student [4, p. 5].  Clearly there is significant opportunity to enhance ITS on mobile devices by incorporating sensors into 

ITS mobile applications.    

Incorporation of sensors into ITS on PC’s using windows, icons, menus and pointers (WIMP) interfaces took decades to  

occur [5, p. 22], [6]–[8].  Whether incorporating sensors into ITS on mobile devices face a similar decades-long climb is 

yet to be determined.  Besides the obvious market size and profitability questions, additional challenges confront 

incorporating sensors into ITS applications on mobile devices to include technology, organizational and security [9], 

interface design [10], learning theory [11]–[13], and user adoption challenges [14].  For example, converting existing ITS 

applications on PC based operating systems onto mobile device face big conversion challenges in terms of the interface.  

Apple’s iOS and Android on devices such as the 2007 iPhone and 2010 iPad reduced WIMP keyboard dependencies [15, 

p. 5] by emphasizing touch-screen finger-based navigation, gesture control, and voice commands now common in post-

WIMP, mobile interfaces [16, p. 64].  Moreover, mobile devices continue to rapidly evolve with natural language capable 

personal assistants such as Microsoft’s Cortana [17] or Apple Siri [18] among the many emerging post-WIMP, mobile 

interface usability enhancements available now and in forth coming generations.    

  

II. INTELLIGENT TUTORING SYSTEMS  

A. Intelligent Tutoring System Architecture  

Traditionally, intelligent tutor architecture possesses four distinct sections: domain model, student model, tutoring model,  

and the user-interface model shown in Fig 1 [19, pp. 60–64], [20, p. ii].  The domain model encompasses specific data 

taught; the student model captures student knowledge level and possibly user learning styles, mood, and other personality 

traits; the tutoring model contains algorithms to improve learning; and the user interface model receives input and displays 

output [20, p. ii].  These four distinct sections trace to systems developed before 1990, and subsequent intelligent tutoring 

systems possess a genealogy traced to those earlier systems [21, p. 5]  

 
Fig 1 ITS Architecture [4] 

 

B. Factors Motivating Adoption and Influencing Success of Intelligent Tutoring Systems  

Factors motivating adoption and influencing the success of ITS may be grouped into five sub-categories.  

 

1) Tutoring Capability of Intelligent Tutoring Systems and its Impact on Student Learning, Affect and 

Engagement: Bloom found one-to-one tutoring of a student by a human may result in a two standard deviation 

improvement over conventional methods [22, p. 4].  At a fundamental level, human instructors may pick up on 

emotional cues of their student and may adapt their teaching strategies accordingly [23, p. 127].  Thus, it’s not 

surprising that some studies have shown that there is a strong relationship between affect and learning within an 

intelligent tutoring system and the emotional state of the student shouldn’t be ignored [24, p. 4], [25, pp. 157–158].  

Forbes-Riley and Rotaru [26, pp. 16–20] proposed that in the absence of affect a student may not experience any 

learning and may be disengaged.  Laurel [27, p. 112] provides a popular characterization of engagement as, “a 

desirable, even essential, human response to computer-mediated activities” while O’Brien and Toms [28, p. 3] further 

breaks down engagement into a series of attributes including attention, novelty, interest, control, feedback and 

challenge.  D’Mello et al. [29], D’Mello, Olney, Williams, & Hays [30] and Shanabrook, Arroyo, & Woolf, [31] 

indicate that the use of sensors to detect student’s affect state may improve the effectiveness of an intelligent tutoring 

system [30, p. 389].    

2) Components in Learning Systems Interfaces: Interface components of intelligent tutors offer different capabilities 

of varying levels of suitability depending on instructional need.  For example, a pen-based stylus allows free writing 

directly into the application and scores high in technology acceptance even though handwriting recognition is still a 

work in progress [32, p. 872].  In Anthony et al’s [32, p. 881] handwriting ITS implementation, learners find entering 
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equations into the system to be more intuitive and are accomplished twice as fast as non-stylus keyboard and mouse 

entry means.  Screen-based free-writing instructional domains, such as algebra equation solving ITS, may be suited 

for both the stylus interface, such as in Anthony et al’s [32] algebra equation solving ITS, and post-WIMP interfaces 

as well.  

 

3) Cost Savings: From a cost perspective, long term cost savings of ITS as an alternative to human tutors also motivates 

ITS system development.  Human tutors must be trained to tutor including interpersonal skills to reduce impatience 

with students and instructional strategies to lead the students towards their learning goal [33, p. 3].  In addition, human 

tutors need to maintain and update their skills given ever changing student profiles.  Contrasting with human tutors, a 

sensor-based intelligent tutoring system that captures and responds to student affect may operate with the effectiveness 

of a well-trained tutor since they both react to the emotional state of the student [34, pp. 1–2].  Moreover, intelligent 

tutors at scale would be far more cost effective in the long-term to build and maintain than training and deploying 

legions of individual human tutors [35, pp. 213–214].    

 

4) Benefit, Convenience and Accessibility: An intelligent tutor does not need to be a comprehensive solution to a 

problem in order to achieve beneficial results but may focus on teaching the “basics”, leaving experienced humans to 

tutor advanced material [35, pp. 213–214].  Flexibility and accessibility to learning made possible by anytime, 

anywhere mobility provides additional motivation for mobile ITS research.  Mobile intelligent tutoring systems would 

likely be more accessible than human tutors as well as deliver the right skills at the place and time right for the 

individual student.    

 

5) Different Target Audiences: While ITS advance, learning communities may vary in diffusion, and stage of 

technology solutions and acceptance [14, p. 178], [36, pp. 194–195], [37, p. 230].  As an example, Proctor and Marks 

[14, p. 178] found more widespread use of computer-based games for educational benefit among kindergarten through 

fifth grade communities then sixth through twelfth grade communities.  Further, Proctor and Marks observed that 

educational game diffusion rates between the two communities had advanced at different rates and at the time of 

writing were in different Rogers Technology Adoption Curve stages [38].  Extrapolating the observed pattern of 

diffusion and stages of educational game to ITS, replacing human tutors with intelligent tutors in the desktop 

community and mobility community may be expected to be at different stages and diffuse at different rates.  

 

C. Sensors in Intelligent Tutoring Systems  

While not all methods of sensor monitoring used in stationary ITS WIMP devices are possible on post-WIMP devices,  

post-WIMP devices may offer a unique set of sensor capabilities not typically seen on stationary WIMP devices.  ITS 

sensors monitoring may be passive and non-intrusive to active and intrusive or include combinations of sensors, each 

sensor combination with varying levels of usefulness [4, p. 5], [24], [29, pp. 3–4], [39, pp. 863–867], [40].    

 

1) Sensor Categories and Fusion of Sensors: Sensors tend to fit within three categories: cameras, haptic sensors, and  

body signal sensors.  Cameras may observe and measure aspects of faces, eye gazes, and even emotion.  Haptic sensors 

glean data related to user state by measuring touch and pressure, such as posture sensors, pressure mice and keyboards.  

Body signal sensors come in direct contact with the participant and passively measure body signals, such as skin 

conductance, heart rate, and electroencephalogram (EEG).  The four most common types of sensors used in intelligent 

tutoring systems are cameras, haptic posture sensor, haptic pressure mouse/keyboard, and body skin conductance.  Each 

sensor provides a specific interpretation of the environment with respect to its collected data.  Traditional stationary 

devices including posture analysis seats, conductance bracelets, facial expression sensors, pressure mice, and blood 

pressure gauges [41, pp. 344–346].  Studies incorporating stationary ITS sensor devices attempt to use varying 

combinations in order to capture a larger set of user affects D’Mello [29, p. 9] notes that different sensors are better apt at 

reading different categories of emotion, such as face detection for confusion and delight, whereas posture sensors can 

more easily detect boredom and flow.   

Through fusion and synergy of multiple sensor data streams the user state may be deduced.  Over the past few years,  

analysis of that sensor data has evolved from offline analysis [24], to the use of judges and self-reporting users [29] and 

to the beginnings of real-time user affect analyses and reaction [25], [40].  Shen’s [40] sensor fusion prototype highlighted 

the challenge of managing and maintaining the amount of data these sensors can deliver to the system.  With the 

advancement of technology, San Diego [39] simplified data collection through collating multiple streams such as user 

gazes, screen interactions, and so forth.  None the less, the increased data throughput forces having a sensible data 

management strategy that’s relevant and useful to the researcher and to the system [39].    

 

2) Camera Sensor (observer): Cameras provide an important direct view of the participant.  That view may be utilized  

in multiple ways.  For example, D’Mello’s [29] used video recordings of the participants that experts used to determine 

the level of engagement.  San Diego [39] also collected camera views of the participants but took advantage of eye tracking 

in order to track user’s gazes.  Recently, Bahreini [42] leveraged the idea of automated camera processing in an e-learning 

environment and developed a framework that interpreted a learner’s emotion in real-time.  Others have performed research 

in using cameras as a user-interface navigational tool instead of a mouse [43].  This type of technology could prove to be 

useful when in an environment where the use of a mouse would not be feasible [43].  
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3) Keyboard, Posture Sensor, and Pressure Mouse (haptic): Activity of a student at a keyboard may be used to infer 

levels mood and performance [4].  Posture sensors (seat sensors) built into the participant’s seat do not require the 

participant to be aware of its existence.  Woolf [24] used the Tekscan posture sensor system, where other researchers 

such as Mutlu [44] developed low-cost alternatives that produced comparable results in small settings.  Both 

approaches are similar in design and try to calculate postures in order to make an inference on the user’s state [24], 

[44]. Similar to posture sensors, pressure mice and keyboards attempt to infer the user’s state by detecting the amount 

of pressure and force inflicted upon the mouse and keyboard [45].  In Arroyo’s study [45], pressure mice were being 

used to determine the level of frustration, and Graesser [46] sought to incorporate pressure keyboards within the 

AutoTutor ITS.  

 

4) Skin Conductance Sensor (body signals): Skin conductance sensors measure the electric variations on the 

participant’s skin.  These sensors are either worn on the hand [40] or the wrist [24].  The mobility of this particular 

sensor is dependent on its particular design.  For example, Shen [40] obtains the skin conductance data from one of 

three sensors that are attached to the participant’s fingers.  Whereas Woolf [24] utilizes a glove to gather skin 

conductance.  The premise of skin conductance sensors is to determine the level of “arousal” for the user [24].  

Depending on the design of the skin conductance sensor, the sensor could be adapted to be portable, such as in Woolf’s 

[24] study.  

 

III. USE OF SENSORS IN MOBILE APPLICATIONS  

Depending on the application, sensors may not be required to have an effective mobile ITS.  For example, Sudoku ITS  

is a native Android app that teaches students how to play Sudoku without explicitly taking advantage of any sensor 

technologies [47, pp. 25–29].  Sudoku ITS tracks the length of user actions and the difficulty of the puzzle while 

maintaining a “user profile”, which is simply a history of how many games the student has played.  Once too much time 

has elapsed between actions, hints are automatically displayed for the user [47, pp. 29–30]. Despite application exceptions, 

sensors have the potential to enhance ITS effectiveness by monitoring and incorporating student affect in real-time into 

teaching strategies.  A challenge is that the efficacy of a sensor driven intelligent tutoring in a mobile computing system 

will be confounded by many factors to include: availability of sensors, the dynamic nature and environmental factors 

associated with mobility, availability, access and limitations of interface components and their associated Application 

Programming Interfaces (API), acceptance of technology by users and communities, ever changing underlying device 

technologies, and the size and stability of markets sufficient to sustain mobile ITS developers.  

In light of post-WIMP devices, availability of sensors for ITS design may change.  For example, cameras are typically  

found on mobile devices and hence may be suitable for mobile ITS.  Conversely using seat sensors in mobile ITS is 

problematic as seats may or may not be used in a mobile setting and if used, may be random.  Skin conductance sensors 

may be applied to mobile applications as Bluetooth makes these devices feasible; however, previous research tying skin 

conductance readings to student level arousal associated with the ITS may be confounded by arousal readings related to 

physical activity associated to mobility itself [40, p. 183].   Tablets typically do not have mice and traditional keyboards 

undermining the use of mice and keyboard sensors in ITS mobility applications.  Furthermore, the keyboard must be 

resting on a surface for a pressure surface to accurate provide feedback, which makes this sensor technology more suitable 

for stationary applications rather than mobile applications.  

In terms of interface components, the proliferation of mobile devices has forced hardware manufacturers to add features  

and capabilities in attempts to differentiate themselves from others [48, p. 4].  Once a device manufacturer introduces a 

feature, other manufacturers quickly implement similar feature sets [49, Para. 1] until it becomes standard in all devices 

such as: frontfacing cameras, near field communication (NFC), infrared blasters, and front-facing speakers.  These features 

let software developers create applications that weren’t previously possible.  For example, mobile applications that utilize 

NFC capabilities can now automate actions based upon what the NFC chip instructs the phone to do, such as change phone 

settings, report into social media websites, or download a business’ contact information [50].  

User communities running Android 4.3, iOS 5, or Windows 8, which now support Bluetooth SMART (or LE for Low 

Energy) allows for communication to a variety of different pulse and heart rate monitors [51].  Coupled with built-in, front 

facing cameras sufficient to the task, proposed intelligent tutoring systems may monitor eye retinas and facial expressions 

of the student.  Pulse, heart rate, eye retinas, and facial expressions may be incorporated to better tailor ITS learning 

strategies to the individual. Mobile application, AttentiveLearner, shows early promise of utilizing a phone’s camera to 

detect whether the student of a video learning class is still engaged in the course [52].  AttentiveLearner takes advantage 

of the LivePulse algorithm to implicitly sense the student’s heart rate via the camera and auditory prompts to track whether 

the student is distracted [52].  Pham and Wang propose “providing intelligent learning interventions on mobile devices” 

as future work since the instructional material does not adapt to the student in real time [52].  

Simple tutors like Soduku ITS, teaching a specific topic, such as the development of “ExploreIT!” [53, pp. 608–609] or 

“Math Tutor” [54, pp. 4–6] have limited success within their intended scope, but as Pham and Wang indicate there is a 

current lack of tailored use of sensors within ITS for post-WIMP mobile tablets that have the capability to monitor student 

affect and appropriately change their tutoring strategies. 

    

IV. MOBILE INTELLIGENT TUTORING SYSTEM (MITS)  

A. Mobile Application Design Considerations  

The opportunity exists to take advantage of the potential of sensors available in tablets, such as Bluetooth heart rate  

monitors and the on-board camera to detect face and eye gazes, for enhancing tablet-based intelligent tutoring systems.  
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When designing learning applications or “apps” for a mobile device, the developers must choose between two 

implementation approaches: a web-based application or a native application [55, p. 1].  Web-based applications may be 

designed and developed with common web-based standards, such as HTML 5.0, CSS, and JavaScript [56, p. 77].  The 

idea behind a web-based application is that as long as the device has the appropriate web-browser that supports all these 

technologies, the user will be able to immediately interact with the service via the browser [55, p. 2].  Furthermore, 

software updates, such as bug fixes and newly developed functionality, may be updated instantly without any required 

user action [55, p. 2]. The other method of developing mobile applications is to develop them specifically for the native 

device.  Native  

applications follow the recommended look-and-feel of that specific operating system and may better interact with the 

resources on the device [57, p. 300].  Native apps need to be written using specific development environments including 

different language requirements and have specific (or recommended) guidelines that developers must follow [55, p. 2].  

Therefore, unlike web-based applications, it takes a considerable amount of effort to learn the intricacies of device-specific 

development [58, p. 2]. When native apps are compared to their web-based counterparts, it may seem difficult to justify 

the extra expense and overhead, but there are inherent advantages in choosing native apps.  With native apps, designers 

can design a user interface that is functional and aesthetically comfortable to use [57, p. 300].  These apps will match the 

‘look-and-feel’ of other apps on the device and thus, will allow for a cohesive user experience [57, p. 300].  Furthermore, 

since native apps are directly communicating with the operating system, the app can take advantage of device-specific 

functionality such as creating shortcuts, use of the notification center, providing customized widgets, and so forth [57, p. 

300].  Conversely, web-based applications are at the mercy of the standardization of Application Programming Interfaces 

(API) that allow for the web-based application to interact with the hardware resources via HTML5.  As a result, native 

apps can directly access hardware resources that are currently available on the device as soon as the device is released 

[59, Para. 9].  Direct hardware access allows mobile ITS to be able to harness the power of hardware sensors for increased 

tutoring efficacy.   

 

B. Design Rationale  

With the few application-specific exceptions cited above, mobile ITS is clearly in the innovator stage of the Rogers 

Technology Adoption Curve.  We propose that in order to best utilize the latest innovations in mobile technology, an ITS 

should be developed that leverages web-based and native app technologies.  The Generalized Intelligent Framework for 

Tutoring (GIFT) is an existing open source intelligent tutoring framework system for which a sensor-based ITS may be 

developed [60, pp. 19–20].  Fig. 2 shows the proposed design of such an ITS that utilizes a native app which leverages 

camera and heart rate sensors in conjunction with the mobile application.  GIFT is installed on the application server, 

which communicates and provides the intelligence for the native mobile app.  

The proposed system would provide the power of an ITS, but allow for the flexibility of mobility.  With the use of sensors, 

the ITS can also better adapt to the student and generate better tutor plans.  A typical use case for this system would be 

for an undergraduate student, wishing to run through the tutoring app on her tablet, from within the classroom, park, or 

even a bus stop.  The student would be able to resume her progress and each moment spent in the application allows for 

the system to better understand her mastery of the curriculum.  

 
Fig. 2 Proposed Mobile ITS Design 

C. mITS Prototype Implementation  

In order to evolve the proof of concept into something tangible and demonstrable, a prototype was developed that  

incorporates the following functionality:  

• Processing of facial detection to determine if user is facing the application  

• Reading heart rate information from a heart rate monitor  

• Integration and communication between an ITS application server (GIFT) and the mobile application  

 

From a high-level design perspective, the mobile application mITS (Mobile Intelligent Tutoring System) prototype  

follows the design outlined by Fig. 2, with a screenshot of the prototype depicted in Fig. 3.  The mobile application is 

currently running on a Nexus 7 (2013) Android tablet with version 5.1.1 of Android (Lollipop).  Since the Nexus 7 sports 

a Qualcomm processor, the application is able to leverage the Snapdragon SDK which provides APIs that allow for facial 

feature detection.  Once the user starts the application, the camera will begin to process its live video stream to detect 

faces and eyes.  If the camera detects such features, then the user is notified via on screen text.  The facial processing will 

continue throughout the life of the application.  

Subsequently, the user pushes the “Start HR Sensor” button, which starts the heart rate monitor functionality, and the  
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user is notified of the current reading once per second.  The hardware required to support this would be any Bluetooth LE 

heart rate monitor and for this implementation the Scosche Rhythm+ was selected.   

To connect to GIFT, the server must already be initialized and a course waiting for a client connection.  From mITS, the  

user would push the “GIFT Connect” button, and interact with GIFT by pushing one of the three buttons.  Each of these 

buttons have specific functions in the course provided by GIFT.  For sake of simplicity, the prototype utilizes one of the 

sample courses which take three button inputs, where the third button informs GIFT to end the course.  To show the 

message interaction between mITS and GIFT, the messages received from and sent to GIFT are presented to the user.  

A finished implementation would hide these messages and process them in the background while domain-specific  

instructional material is presented to the user instead.  Likewise, every second there will be a new heart rate reading sent 

by the heart rate monitor currently attached to the user’s upper forearm.  Both sets of sensor data is saved into timestamped 

files which can be used for further analysis.  This data reporting infrastructure can be used by any sub component of the 

application.  

 
Fig. 3 mITS Prototype Screenshot 

 

D. Future work and research  

An immediate short-term goal is experimental involving conduct of a series of trials in order to obtain usability metrics  

on the prototype.  The basic research question is, can the use of dedicated sensors as implemented by this prototype on a 

given mobile device improve an intelligent tutoring system’s ability to tailor the curriculum in real-time?  Challenges 

before one can enable a user to learn anywhere, anytime on a mobile device include incorporating the prototype application 

into curriculum and insuring application stability given intermittent internet connectivity.  Analysis question include, do 

students that experience a sensor enhanced ITS application on a mobile device actually perform better than students using 

a ITS application on a mobile device that does not incorporate sensors?  Other analysis questions include what are the 

differences in user acceptance and usability?  The results of these trials will lead to other research questions which can be 

explored in future studies such as: posture implication, tablet orientation (accelerometer), external distractions, and so 

forth.  

 

V. SUMMARY  

To address both the lack of research on mobile ITS and how sensors can improve their effectiveness, the mITS prototype  

demonstrates that sensor technology may be incorporated into a ITS application on a mobile device.  mITS successfully 

fuses two mobile sensors and provides a novel interface to GIFT courses.  Follow-on research includes incorporation of 

mITS into curriculum and determining the level of contribution to student performance, acceptance, and usability.  Clearly, 

application developers must consider trade-offs between both post-WIMP and convenience factors, as well as the 

challenges posed by a dynamic and ever evolving technology landscape.  These challenges may be best addressed by 

leveraging a generalized framework for intelligent tutoring systems in order to support a mobile device.  Future research 

efforts may expand upon the mITS prototype within a full course curriculum.  Reusability of interfaces to sensors is 

essential to cost control and affordable customization.  If successful, the opportunity for more widespread, cost effective, 

accessible, and educationally beneficial ITS’s on mobile devices may begin to be realized.   
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