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Abstract: -  
Many modern functions and systems represent and exchange data in treestructured form and process and produce large 

tree datasets. Discovering informative patterns in large tree datasets is an important research area that has many 

practical applications. We propose a novel approach that exploits efficient homomorphic pattern matching algorithms to 

compute pattern support incrementally and avoids the costly enumeration of all patterns matching required by previous 

approaches. To reduce space consumption, matching information of already computed patterns is materialized as 

bitmaps. We further optimize our basic support computation method by designing an algorithm which incrementally 

generates the bitmaps of the embeddings of a new candidate pattern without first explicitly computing the embeddings of 

this pattern. Our extensive experimental results on real and synthetic large-tree datasets show that our approach displays 

orders of magnitude performance improvements over a state-of-the-art tree mining algorithm and a recent graph mining  

algorithm 
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I. INTRODUCTION   

Extracting frequent tree patterns which are hidden in data trees is central for analyzing data and is a base step for other 

data mining processes including association rule mining, clustering and classification. Trees have emerged in recent years 

as the standard format for representing, exporting, exchanging and integrating data on the  

web (e.g., XML and JSON). Tree data are adopted in various application areas and systems such as business process 

management, NoSQL databases, key-value stores, scientific workflows, computational biology and genome analysis. 

Because of its practical importance, tree mining has been extensively studied. The approaches to tree mining can be 

basically characterized by two parameters: (a) the type of morphism used to map the tree patterns to the data structure 

and (b) the type of mined tree data.  

 

 
Fig. 1 Different types of mined tree patterns occurring in three of the four data trees. a Data trees,  

b mined tree patterns 

  

Mining homomorphic tree patterns The morphism determines how a pattern is mapped to the data tree. The morphism 

definition depends also on the type of pattern considered. In the literature, two types of tree patterns have been studied: 

patterns whose edges represent parent-child relationships (child edges) and patterns whose edges represent ancestor-

descendant relationships (descendantedges). Over the years, research has evolved from considering isomorphisms for 

mining patterns with child edges (induced patterns) to considering embeddings for mining patterns with descendant edges 

(embedded patterns). Because of the descendant edges, embeddings are able to extract patterns “hidden” (or embedded) 

deep within large trees which might be missed by the induced pattern definition. Nevertheless, embeddings are still 

restricted because: (a) They are injective (one-to-one), and (b) they cannot map two sibling nodes in a pattern to two 

nodes on the same path in the data tree. On the other hand, homomorphisms are powerful morphisms that do not have 

those two restrictions of embeddings. We term patterns with descendant edges, mined through homomorphisms, 

homomorphic patterns. As homomorphisms are more relaxed than embeddings, the mined homomorphic patterns are a 

superset of the mined embedded patterns.  

  

Figure 1a shows four data trees corresponding to different schemas to be integrated through the mining of large tree 

patterns. The frequency threshold is set to three. Figure 1b shows induced mined tree patterns, embedded patterns and 

non-redundant homomorphic patterns. Figure 1b includes the largest patterns that can be mined in each category. As one 

can see, the shown embedded patterns are not induced patterns, and the shown homomorphic patterns are neither 

embedded nor induced patterns.  

Further, the homomorphic patterns are larger than all the other patterns.  

  

Large patterns are more useful in describing data. Mining tasks usually attach much greater importance to patterns that 

are larger in size, e.g., longer sequences are usually of more significant meaning than shorter ones in bioinformatics. As 

mentioned in, large patterns have become increasingly important in many modern applications.  

  

Therefore, homomorphisms and homomorphic patterns display a number of advantages. First, they allow the extraction 

of patterns that cannot be extracted by embedded patterns. Second, extracted homomorphic patterns can be larger than 

embedded patterns. Finally, homomorphisms can be computed more efficiently than embeddings. Indeed, the problem of 

checking the existence of a homomorphism of an unordered tree pattern to a data tree is polynomial, while the 

corresponding problem for an embedding is NP-complete.  

  

Mining patterns from a large data tree The type of mined data can be a collection of small trees or a single large tree. 

Surprisingly, the problem of mining tree patterns from a single large tree has only very recently been touched even though 

a plethora of interesting datasets from different areas are in the form of a single large tree. Examples include encyclopedia 

databases like Wikipedia, bibliographic databases like PubMed, scientific and experimental result databases like 

UniprotKB, and biological datasets like phylogenetic trees. These datasets grow constantly with the addition of new data. 

Big data applications seek to extract information from large datasets. However, mining a single large data tree is more 

complex than mining a set of small data trees. In fact, the former setting is more general than the latter, since a collection 

of small trees can be modeled as a single large tree rooted at a virtual unlabeled node. Existing algorithms for mining 

embedded patterns from a collection of small trees cannot scale well when the size of the data tree increases. Our 

experiments show that these algorithms cannot scale beyond some hundreds of nodes in a data tree with lowfrequency 

thresholds.  

  

  

The problem Unfortunately, previous work has focused almost exclusively on mininginduced and embedded patterns 

from a set of small trees. The issue of mining homomorphic patterns from a single large data tree has been neglected.   
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The challenges Mining homomorphic tree patterns is a challenging task. Homomorphic tree patterns are difficult to handle 

as they may contain redundant nodes. If their structure is not appropriately constrained, the number of frequent patterns 

(and therefore the number of candidate patterns that need to be generated) can be infinite.   

  

The support of patterns in the single large data tree setting cannot be anymore the number of trees that contain the pattern 

as is the case in the multiple small trees setting. A new way to define pattern support in the new setting is needed which 

enjoys useful monotonic characteristics. Typically, one can deal with a large number of frequent patterns, by computing 

only maximal frequent patterns. In the context of induced tree patterns, a pattern is maximal if there is no frequent 

superpattern. A nonmaximal pattern is not returned to the user as there is a larger, more specific pattern, which is frequent. 

However, in the context of homomorphic patterns, which involve descendant edges, the concept of superpattern is not 

sufficient for capturing the specificity of a pattern.   

  

II. PROBLEM DEFINITION   

Trees and inverted lists We consider rooted labeled trees, where each tree has a distinguished root node and a labeling 

function lb mapping nodes to labels. A tree is called ordered if it has a predefined left-to-right ordering among the children 

of each node. Otherwise, it is unordered. The size of a tree is defined as the number of its nodes. In this paper, unless 

otherwise specified, a tree pattern is a rooted, labeled, unordered tree. For every label a in an input data tree T, we construct 

an inverted list La of the data nodes with label a ordered by their pre-order appearance in T. Figure 2a, b shows a data 

tree and inverted lists of its labels.    

Tree morphisms There are two types of tree patterns: patterns whose edges represent child relationships (child edges) and 

patterns whose edges represent descendant relationships (descendant edges). In the literature of tree pattern mining, 

different types of morphisms are employed to determine whether a tree pattern is included in a tree.  

  

III. PROPOSED APPROACH  

Our approach for mining homomorphic tree patterns from a large tree iterates between the candidate generation phase 

and the support counting phase. In the first phase, we use a systematic way to generate candidate patterns that are 

potentially frequent. In the second phase, we develop an efficient method to compute the support of candidate patterns.   

Candidate Generation To generate candidate patterns, we adapt in this section the equivalence class-based pattern 

generation method proposed in so that it can address pattern redundancy and maximality. A candidate pattern may have 

multiple alternative isomorphic representations. To minimize the redundant generation o the isomorphic representations 

of the same pattern, we employ a canonical form for tree patterns   

 

3.1.1 Equivalence Class-Based Pattern Generation  

Let P be a pattern of size k-1. Each node of P is identified by its depth-first position in the tree, determined through a 

depth-first traversal of P, by sequentially assigning numbers to the first visit of the node. The rightmost leaf of P, denoted 

rml, is the node with the highest depth-first position. The immediate prefix of P is the subpattern of P obtained by deleting 

the rml from P. The equivalence class of P is the set of all the patterns of size k that have P as their immediate prefix. We 

denote the equivalence class of P as [P]. Any two members of [P] differ only in their rmls.   

  

3.1.2 Checking Pattern Redundancy  

The pattern generation process may produce candidates which are redundant. We discuss below how to efficiently check 

pattern redundancy by identifying redundant nodes. We exploit a result of which states that: A node X of a pattern P is 

redundant iff there exists a homomorphism h from P to itself such that h(x) != x. A brute-force method for checking 

whether a pattern is redundant computes all the possible homomorphisms from P to itself.   

The number of expandable patterns enumerated by the equivalence class expansion process can still be very large, 

particularly when the frequent patterns to find have both a high depth and a high branching factor. In order to further 

reduce the number of generated patterns, we present below a pattern refining method which exploits properties of the 

equivalence class-based pattern expansion. We observe that the specificity relation _ induces a linear order on patterns in 

a given equivalence class whose rightmost leaf nodes have the same labels.  

We present now our homomorphic tree pattern mining algorithm called HomTreeMiner. The first part of the algorithm 

computes the sets containing all frequent 1-patterns F1 (i.e., nodes) and 2-patterns F2 (lines 1–2). F1can be easily obtained 

by finding inverted lists of T whose size (in terms of number of nodes) is no less than minsup.The total time for this step 

is O(|T|). F2 is computed by the following procedure: Let X / Y denote a 2-pattern formed by two elements X and Y of 

F1. The support of X / Y is computed via algorithm TwigStack on the inverted listsLlbðXÞ and LlbðYÞ that are associated 

with labels lb(X) and lb(Y), respectively. The total time for each 2-pattern candidate is O(|T|).  

 

Experimental Evaluation  

We implemented our algorithm HomTreeMiner and we conducted experiments to: (a) compare the features of the 

extracted (maximal) homomorphic patterns with those of (maximal) embedded patterns and (b) study the performance of 

HomTreeMiner in terms of execution time, memory consumption and scalability. To evaluate the  effect of the pattern 

refining technique described in consider also a basic version of HomTreeMiner that does not employ that optimization in 

its mining process. That basic version was introduced in and is called HomTMBasic in the following paragraphs.   

Journal of Advance Research in Computer science and Engineering   (ISSN: 2456-3552)

Vol. 6 No. 9 (2019) 3



To the best of our knowledge, there is no previous algorithm computing homomorphic patterns from data trees. Therefore, 

we compared the performance of our algorithm with state-of-the-art algorithms that compute embedded patterns on the 

same dataset.   

Datasets We have ran experiments on three real and benchmark datasets with different structural properties. Their main 

characteristics are summarized in Table 1. Treebank1 is a real XML dataset derived from computation linguistics. It 

models the syntactic structure of English text and provides a hierarchical representation of the sentences in the text by 

breaking them into syntactic units based on part of speech. The dataset is deep and comprises highly recursive and 

irregular structures. XMark2 is an XML benchmark dataset generated using the data generator with factor = 0.05. It is 

deep and has many regular structural patterns. It includes very few recursive elements.  

  

Table 1 Dataset Statistics   

Dataset  Tot. #nodex  #lables  Max/avg depth  #paths  

Treebank  2,437.6666  250  36/8.4  1,392,231  

XMark  83,533  74  12/5.6  60,853  

CSlogs  772,188  13,355  86/4.4  59,691(#trees)  

  

We compare the performance of HomTreeMiner with two unordered embedded tree mining algorithms Sleuth and 

EmbTreeMiner. Sleuth was designed to mine embedded patterns from a set of small trees. In order to allow the 

comparison in the single large tree setting, we adapted Sleuth by having it return as support of a pattern the number of its 

root occurrences in the data tree. EmbTreeMiner is a newer embedded tree mining algorithm which, as HomTreeMiner, 

exploits the twig-join approach and bitmaps to compute pattern support. To the best of our knowledge, direct mining of 

maximal embedded patterns has not been studied in the literature. We therefore use post-processing pruning which 

eliminates non-maximal patterns after computing all frequent embedded patterns. For this task, we  implemented the 

unordered tree inclusion algorithm described in. As our experiments show, the cost of this postprocessing step is in general 

not significant compared to the frequent pattern mining cost.   

Some patterns within a reasonable amount of time, we used a fraction of the Treebank dataset which consists of 35% of 

the nodes of the original tree. We measured execution times over the entire Treebank dataset in the scalability experiment.  

We computed different statistics on frequent and maximal frequent patterns mined by HomTreeMiner and Emb- 

TreeMiner from the three datasets varying the support; the results are summarized in Table 2. For the comparison, we 

considered only maximal embedded patterns that contain no redundant nodes. We show the total number of maximal 

embedded patterns in parenthesis in Column 5. We can make the following observations.   

 
  

First, HomTreeMiner is able to discover larger patterns than EmbTreeMiner for the same support level. As one can see 

in Table 2, the maximum size of frequent homomorphic patterns and the maximum size and average number of nodes, 

height and fanout of maximum frequent homomorphic patterns is never smaller (substantially larger in many cases) than 

that of the embedded patterns for the same support level.   

  

Second, the number of homomorphic and embedded frequent patterns is substantially reduced if only maximal patterns 

are selected (Column 6 of Table 2). However, the effect is larger on homomorphic patterns as the number of frequent 

homomorphic patterns is usually larger than that of embedded patterns for the same support level (Column 3 of Table 2).   

  

Third, by further looking at the mined maximal patterns, we find that the embedded maximal patterns at a certain support 

level can be partitioned into sets which correspond one-to-one to the maximal homomorphic patterns at the same support 

level so that all the embedded patterns in a set are less specific than the corresponding homomorphic pattern. Figure 14 

shows, for each of the three datasets, examples of embedded maximal patterns each from the same set in the partition and 

the corresponding maximal homomorphic pattern. Therefore, for a number of applications, maximal homomorphic 

patterns can offer more information in a more compact way.  
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IV. CONCLUSION  

We have provided a novel definition of maximal homomorphic patterns which takes into account homomorphisms, 

pattern specificity and the single tree setting. We have designed an efficient algorithm that discovers all frequent non-

redundant maximal homomorphic tree patterns. Our approach employs an incremental stack-based frequency 

computation method that avoids the costly enumeration of all pattern occurrences required by previous approaches. An 

originality of our method is that matching information of already computed patterns is materialized as bitmaps, which 

greatly reduces both memory consumption and computation costs. An optimization technique further prunes the search 

space of candidate patterns. We have conducted extensive experiments to compare our approach with tree mining 

algorithms that mine embedded patterns when applied to a large data tree. Our results show that maximal homomorphic 

patterns are fewer and larger than maximal embedded tree patterns.  

  

Our algorithm is as fast as the state-of the art algorithm mining embedded trees from a single tree while outperforming it 

in terms of memory consumption and scalability. Several applications are interested in extracting not all the frequent 

patterns, but only those that comply with a number of restrictions. We are currently working on incorporating user-

specified constraints to the proposed approach to enable constraintbased homomorphic pattern mining.  

 

REFERENCES:  

[1].Asai T, Arimura H, Uno T, Nakano S-I (2003) Discovering frequent substructures in large unordered trees. In: 

Discovery, Science, pp 47–61  

[2].Bruno N, Koudas N, and Srivastava D (2002) Holistic twig joins: optimal XML pattern matching. In: SIGMOD, pp 

310–321.  

[3].Chi Y, Xia Y, Yang Y, Muntz RR (2005) Mining closed and maximal frequent subtrees from databases of labeled 

rooted trees. IEEE Trans Knowl Data Eng 17(2):190–202  

[4].Chi Y, Yang Y, and Muntz RR (2004) Hybridtreeminer: an efficient algorithm for mining frequent rooted trees and 

free trees using canonical form. In: SSDBM, pp 11– 20  

[5].Chi Y, Yang Y, Muntz RR (2005) Canonical forms for labeled trees and their applications in frequent subtree mining. 

Knowl Inf Syst 8(2):203–234.  

[6].Dries A, Nijssen S (2012) Mining patterns in networks using homomorphism. In: SDM, pp 260–271   

[7].Feng Z, Hsu W, and Lee M-L (2005) Efficient pattern discovery for semistructured data. In: ICTAI, pp 294–301   

[8].Goethals B, Hoekx E, and den Bussche JV (2005) Mining tree queries in a graph. In: KDD, pp 61–69  

[9].Kibriya AM, Ramon J (2013) Nearly exact mining of frequent trees in large networks. Data Min Knowl Discov 

27(3):478–504  

[10]. Kilpela¨inen P, Mannila H (1995) Ordered and unordered tree inclusion. SIAM J Comput 24(2):340–356  

[11]. Miklau G, Suciu D (2004) Containment and equivalence for a fragment of xpath. J ACM 51(1):2–45  

[12]. Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: KDD, pp 647652  

[13]. Tan H, Hadzic F, Dillon TS, Chang E, Feng L (2008) Tree model guided candidate generation for 

miningfrequentsubtrees from xml documents. TKDD 2(2):1–43  

[14]. Tatikonda S, Parthasarathy S, Kurc  ̧TM (2006) Trips and tides: new algorithms for tree mining. In: CIKM, pp              

455–464  

[15]. Termier A, Rousset M-C, Sebag M (2002) Treefinder: a first step towards xml data mining. In: ICDM, pp 450–457.  

Journal of Advance Research in Computer science and Engineering   (ISSN: 2456-3552)

Vol. 6 No. 9 (2019) 5


