Interleaved DC-DC Converter Based BL Buckboost Converter Fed BLDC Drive
DOI:
https://doi.org/10.53555/nneee.v2i4.205Keywords:
Bridgeless (BL), improved converter, brushless direct current (BLDC) motor, discontinuous inductor current mode (DICM), power qualityAbstract
In this paper an improved BL Buck-Boost PFC converter fed brushless direct current (BLDC) motor drive for desired speed applications has been presented. The additional inductance and power semiconductor switches gives the advantages over the conventional circuit configuration. The reliability of the circuit gets improved by proposed model. Voltage source inverter (VSI) is used to reduce the losses across the power switches. The performance of the proposed BLDC motor is evaluated over a wide range of speed control and observed in MATLAB/Simulation environment.
References
C. L. Xia, Permanent Magnet Brushless DC Motor Drives and Controls. Hoboken, NJ, USA: Wiley, 2012
J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614–623, Apr. 2006
Y. Chen, C. Chiu, Y. Jhang, Z. Tang, and R. Liang, “A driver for the singlephase brushless dc fan motor with hybrid winding structure,” IEEE Trans.Ind. Electron., vol. 60, no. 10, pp. 4369–4375, Oct. 2013
X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “A single sided matrix converter drive for a brushless dc motor in aerospace applications,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3542–3552, Sep. 2012
H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control. Boca Raton, FL, USA: CRC Press, 2004
P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 537–541,Nov. 1988
S. Singh and B. Singh, “A voltage-controlled PFC Cuk converter based PMBLDCM drive for air-conditioners,” IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 832–838, Mar./Apr. 2012
B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality acdc converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962–981, Oct. 2003
B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase ac-dc power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540–556, Nov. 2011
S. Singh and B. Singh, “Power quality improved PMBLDCM drive for adjustable speed application with reduced sensor buck-boost PFC converter,” in Proc. 4th ICETET, Nov. 18–20, 2011, pp. 180–184
T. Gopalarathnam and H. A. Toliyat, “A new topology for unipolar brushless dc motor drive with high power factor,” IEEE Trans. Power Electron.,vol. 18, no. 6, pp. 1397–1404, Nov. 2003
Y. Jang and M. M. Jovanovi´c, “Bridgeless high-power-factor buck converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 602–611, Feb. 2011
L. Huber, Y. Jang, and M. M. Jovanovi´c, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381–1390, May 2008
A. A. Fardoun, E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “New ‘real’ bridgeless high efficiency ac-dc converter,” in Proc. 27th Annu. IEEE APEC Expo., Feb. 5–9, 2012, pp. 317–323
W. Wei, L. Hongpeng, J. Shigong, and X. Dianguo, “A novel bridgeless buck-boost PFC converter,” in IEEE PESC/IEEE Power Electron. Spec. Conf., Jun. 15–19, 2008, pp. 1304–1308. [17] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292–3301, Jul. 2012
A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “A comparison between three proposed bridgeless Cuk rectifiers and conventional topology for power factor correction,” in Proc. IEEE ICSET, Dec. 6–9, 2010, pp. 1–6
M. Mahdavi and H. Farzaneh-Fard, “Bridgeless CUK power factor correction rectifier with reduced conduction losses,” IET Power Electron., vol. 5, no. 9, pp. 1733–1740, Nov. 2012
A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Cuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873–881, Mar./Apr. 2011
M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC rectifier with reduced components and conduction losses,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sep. 2011
N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design. Hoboken, NJ, USA: Wiley, 2003
A. Emadi, A. Khaligh, Z. Nie, and Y. J. Lee, Integrated Power Electronic Converters and Digital Control. Boca Raton, FL, USA: CRC Press, 2009
D. S. L. Simonetti, J. Sebastian, F. S. dos Reis, and J. Uceda, “Design criteria for SEPIC and Cuk converters as power factor preregulators in discontinuous conduction mode,” in Proc. Int. Electron. Motion Control Conf., 1992, vol. 1, pp. 283–288
V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. Power Electron., vol. 11
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.