Resistant Reactions to Bothersome Skin Lession at Scabies Disease: The Systematic Review and Metaanalysis

Authors

  • Yeyen Jani Sari Dabukke Faculty of Medicine, University of Methodist, Indonesia

DOI:

https://doi.org/10.53555/nnmhs.v8i1.1179

Keywords:

Immune system, itch, scabies, Sarcoptes scabiei

Abstract

Scabies may be a parasitic infection due to invasion of skin by the burrowing bug Sarcoptes scabiei. Scabies may be a major open wellbeing issue and endemic in asset destitute communities around the world influencing over 100 million individuals. Related bacterial contaminations cause significant dismalness, and in extreme cases can lead to renal and cardiac maladies. Bug invasion of the skin causes restricted cutaneous irritation, pruritus, skin injuries, and unfavorably susceptible and provocative reactions are mounted by the have against the vermin and its items. Method: This study using systematic review that search using keyword heart inflammation, myocarditis and Covid-19 Vaccination in Google Scholar, PubMed, and CrossRef. After final screening the author analysize 2 articles. Result: improvement of immunodiagnostics, antibodies, and immunotherapeutic speaks to a promising long term procedure to control scabies in influenced communities all inclusive.Conclussion: A comprehensive understanding of the immune events in the skin and peripheral blood occurring during scabies may provide multiple points at which immunological interventions may  intersect the infection and target the responses away from pathology to immunity.

References

Hicks MI, Elston DM. Scabies. Dermatol Ther. 2009;22(4):279–292. doi: 10.1111/j.1529 8019.2009.01243.x. [PubMed] [CrossRef] [Google Scholar]

Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527–1534. doi: 10.1038/jid.2013.446. [PubMed] [CrossRef] [Google Scholar]

Romani L, Steer AC, Whitfeld MJ, Kaldor JM. Prevalence of scabies and impetigo worldwide: a systematic review. Lancet Infect Dis. 2015;15(8):960–967. doi: 10.1016/S1473- 3099(15)00132-2. [PubMed] [CrossRef] [Google Scholar]

Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2197–2223. doi: 10.1016/S0140-6736(12)61689-4. [PubMed] [CrossRef] [Google Scholar]

Hoy WE, White AV, Dowling A, Sharma SK, Bloomfield H, Tipiloura BT, et al. Post- streptococcal glomerulonephritis is a strong risk factor for chronic kidney disease in later life. Kidney Int. 2012;81:1026–1032. doi: 10.1038/ki.2011.478. [PubMed] [CrossRef] [Google Scholar]

Engelman D, Kiang K, Chosidow O, McCarthy J, Fuller C, Lammie P, et al. Toward the global control of human scabies: introducing the international alliance for the control of scabies. PLoS Negl Trop Dis. 2013;7(8):e2167. doi: 10.1371/journal.pntd.0002167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Mellanby K. Transmission of scabies. Br Med J. 1941;2(4211):405–406. doi: 10.1136/bmj.2.4211.405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wendel K, Rompalo A. Scabies and pediculosis pubis: an update of treatment regimens and general review. Clin Infect Dis. 2002;35(Suppl 2):S146– S151. doi: 10.1086/342102. [PubMed] [CrossRef] [Google Scholar]

McCarthy JS, Kemp DJ, Walton SF, Currie BJ. Scabies: more than just an irritation. Postgrad Med J. 2004;80(945):382–387. doi: 10.1136/pgmj.2003.014563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Walton SF, Currie BJ, Kemp DJ. A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei. Mol Biochem Parasitol. 1997;85(2):187– 196. doi: 10.1016/S0166-6851(96)02825- 3. [PubMed] [CrossRef] [Google Scholar]

Mounsey KE, Murray HC, King M, Oprescu F. Retrospective analysis of institutional scabies outbreaks from 1984 to 2013: lessons learned and moving forward. Epidemiol Infect. 2016;144(11):2462–2471.doi: 10.1017/S0950268816000443. [PubMed][CrossRef] [Google Scholar]

Hulbert TV, Larsen RA. Hyperkeratotic (Norwegian) scabies with gram-negative bacteremia as the initial presentation of AIDS. Clin Infect Dis. 1992;14(5):1164–1165. doi: 10.1093/clinids/14.5.1164. [PubMed] [CrossRef] [Google Scholar]

Currie BJ, Carapetis JR. Skin infections and infestations in aboriginal communities in northern Australia. Australas J Dermatol. 2000;41(3):139– 143. doi: 10.1046/j.1440- 0960.2000.00417.x. [PubMed] [CrossRef] [Google Scholar]

Roberts LJ, Huffam SE, Walton SF, Currie BJ. Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J Inf Secur. 2005;50(5):375– 381. [PubMed] [Google Scholar]

Einsiedel LJ, Pepperill C, Wilson K. Crusted scabies: a clinical marker of human T-lymphotropic virus type 1 infection in central Australia. Med J Aust. 2014;200(11):633–634. doi: 10.5694/mja14.00458. [PubMed] [CrossRef] [Google Scholar]

Youshock E, Glazer SD. Norwegian scabies in a renal transplant patient. JAMA. 1981;246(22):2608– 2609. doi: 10.1001/jama.1981.03320220058027. [PubMed] [CrossRef] [Google Scholar]

Gogna NK, Lee KC, Howe DW. Norwegian scabies in Australian aborigines. Med J Aust. 1985;142(2):140–2. [PubMed]

Morgan MS, Arlian LG, Markey MP. Sarcoptes scabiei mites modulate gene expression in human skin equivalents. PLoS One. 2013;8(8):e71143. doi: 10.1371/journal.pone.0071143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Cote NM, Jaworski DC, Wasala NB, Morgan MS, Arlian LG. Identification and expression of macrophage migration inhibitory factor in Sarcoptes scabiei. Exp Parasitol. 2013;135(1):175–181. doi: 10.1016/j.exppara.2013.06.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Walton SF. The immunology of susceptibility and resistance to scabies. Parasite Immunol. 2010;32(8):532–540. [PubMed] [Google Scholar]

Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–797. doi: 10.1038/ni.1923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Wikel SK. Acquired resistance to ticks: expression of resistance by C4-deficient guinea pigs. Am J Trop Med Hyg. 1979;28(3):586–590. doi: 10.4269/ajtmh.1979.28.586. [PubMed] [CrossRef] [Google Scholar]

Zipfel PF, Wurzner R, Skerka C. Complement evasion of pathogens: common strategies are shared by diverse organisms. Mol Immunol. 2007;44(16):3850–3857. doi: 10.1016/j.molimm.2007.06.149. [PubMed] [CrossRef] [Google Scholar]

Walton SF, Beroukas D, Roberts-Thomson P, Currie BJ. New insights into disease pathogenesis in crusted (Norwegian) scabies: the skin immune response in crusted scabies. Br J Dermatol. 2008;158(6):1247–1255. doi: 10.1111/j.1365-2133.2008.08541.x. [PubMed] [CrossRef] [Google Scholar]

Janeway CAJ, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. In: Sarah G, editor. Immunobiology: the immune system in health and disease. New York: Garland Science; 2001. [Google Scholar]

Mika A, Reynolds SL, Pickering D, McMillan D, Sriprakash KS, Kemp DJ, Fischer K. Complement inhibitors from scabies mites promote streptococcal growth - a novel mechanism in infected epidermis? PLoS Negl Trop Dis. 2012;6(7):e1563.doi: 10.1371/journal.pntd.0001563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Swe PM, Fischer K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl Trop Dis. 2014;8(6):e2928. doi: 10.1371/journal.pntd.0002928. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Holt DC, Fischer K. Novel insights into an old disease: recent developments in scabies mite biology. Curr Opin Infect Dis. 2013;26(2):110–115. doi: 10.1097/QCO.0b013e32835eb986. [PubMed] [CrossRef] [Google Scholar]

Swe PM, Zakrzewski M, Kelly A, Krause L, Fischer K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl Trop Dis. 2014;8(5) doi: 10.1371/journal.pntd.0002897. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2006;117(Suppl 2 Mini-Primer):S450– S456. doi: 10.1016/j.jaci.2005.11.016. [PubMed] [CrossRef] [Google Scholar]

Elwood H, Berry RS, Gardner JM, Shalin SC. Superficial fibrin thrombi … and other findings: a review of the histopathology of human scabetic infections. J Cutan Pathol. 2015;42(5):346–352. doi: 10.1111/cup.12482. [PubMed] [CrossRef] [Google Scholar]

van den Broek AH, Huntley JF, MacHell J, Taylor M, Bates P, Groves B, Miller HR. Cutaneous and systemic responses during primary and challenge infestations of sheep with the sheep scab mite, Psoroptes ovis. Parasite Immunol. 2000;22(8):407–414. doi: 10.1046/j.1365-3024.2000.00318.x. [PubMed] [CrossRef] [Google Scholar]

Sarre C, Gonzalez-Hernandez A, Van Coppernolle S, Grit R, Grauwet K, Van Meulder F, et al. Comparative immune responses against Psoroptes ovis in two cattle breeds with different susceptibility to mange. Vet Res. 2015;46:131. doi: 10.1186/s13567-015-0277- x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Little SE, Davidson WR, Rakich PM, Nixon TL, Bounous DI, Nettles VF. Responses of red foxes to first and second infection with Sarcoptes scabiei. J Wildl Dis. 1998;34(3):600–611. doi: 10.7589/0090- 3558-34.3.600. [PubMed] [CrossRef] [Google Scholar]

Walton SF, Pizzutto S, Slender A, Viberg L, Holt D, Hales BJ, et al. Increased allergic immune response to Sarcoptes scabiei antigens in crusted versus ordinary scabies. Clin Vaccine Immunol. 2010;17(9):1428–1438. doi: 10.1128/CVI.00195-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Hamelmann E, Gelfand EW. IL-5-induced airway eosinophilia - the key to asthma? Immunol Rev. 2001;179:182–91. [PubMed]

Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM. Type 2 immunity is controlled by IL- 4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med. 2006;203(6):1435–1446. doi: 10.1084/jem.20052448. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Cadman ET, Lawrence RA. Granulocytes: effector cells or immunomodulators in the immune response to helminth infection? Parasite Immunol. 2010;32(1):1–19. doi: 10.1111/j.1365- 3024.2009.01147.x. [PubMed] [CrossRef] [Google Scholar]

Jacobsen EA, Taranova AG, Lee NA, Lee JJ. Eosinophils: singularly destructive effector cells or purveyors of immunoregulation? J Allergy Clin Immunol. 2007;119(6):1313–1320. doi: 10.1016/j.jaci.2007.03.043. [PubMed] [CrossRef] [Google Scholar]

Lamkhioued B, Gounni AS, Aldebert D, Delaporte E, Prin L, Capron A, Capron M. Synthesis of type 1 (IFN gamma) and type 2 (IL-4, IL-5, and IL-10) cytokines by human eosinophils. Ann NY Acad Sci. 1996;796:203–8. [PubMed]

Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, et al. Expression and function of toll-like receptors in eosinophils: activation by toll-like receptor 7 ligand. J Immunol. 2003;171(8):3977–3982. doi: 10.4049/jimmunol.171.8.3977. [PubMed] [CrossRef] [Google Scholar]

Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180– 190. [PubMed] [Google Scholar]

Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, et al. Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol. 996;15(3):404–409. doi: 10.1165/ajrcmb.15.3.8810646. [PubMed] [CrossRef] [Google Scholar]

Amer M, Mostafa FF, Nasr AN, el-Harras M. The role of mast cells in treatment of scabies. Int J Dermatol. 1995;34(3):186–189. doi: 10.1111/j.1365- 4362.1995.tb01564.x. [PubMed] [CrossRef] [Google Scholar]

Ito Y, Satoh T, Takayama K, Miyagishi C, Walls AF, Yokozeki H. Basophil recruitment and activation in inflammatory skin diseases. Allergy. 2011;66(8):1107–1113. doi: 10.1111/j.1398-9995.2011.02570.x. [PubMed] [CrossRef] [Google Scholar]

Mounsey KE, Murray HC, Bielefeldt-Ohmann H, Pasay C, Holt DC, Currie BJ, et al. Prospective study in a porcine model of sarcoptes scabiei indicates the association of Th2 and Th17 pathways with the clinical severity of scabies. PLoS Negl Trop Dis. 2015;9(3):e0003498. doi: 10.1371/journal.pntd.0003498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Nimmervoll H, Hoby S, Robert N, Lommano E, Welle M, Ryser-Degiorgis MP. Pathology of sarcoptic mange in red foxes (Vulpes vulpes): macroscopic and histologic characterization of three disease stages. J Wildl Dis. 2013;49(1):91–102. doi: 10.7589/2010-11-316. [PubMed] [CrossRef] [Google Scholar]

Skerratt LF. Cellular response in the dermis of common wombats (Vombatus ursinus) infected with Sarcoptes scabiei var. wombati. J Wildl Dis. 2003;39(1):193–202. doi: 10.7589/0090-3558- 39.1.193. [PubMed] [CrossRef] [Google Scholar]

Schroeder JT. Basophils: emerging roles in the pathogenesis of allergic disease. Immunol Rev. 2011;242(1):144–160. doi: 10.1111/j.1600- 065X.2011.01023.x. [PubMed] [CrossRef] [Google Scholar]

Brombacher F. The role of interleukin-13 in infectious diseases and allergy. BioEssays. 2000;22(7):646–656. doi: 10.1002/1521-1878(200007)22:7<646::AID- BIES7>3.0.CO;2-9. [PubMed] [CrossRef] [Google Scholar]

Abd El-Aal AA, Hassan MA, Gawdat HI, Ali MA, Barakat M. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies. Int J Immunopathol Pharmacol. 2016;29(2):188–194. doi: 10.1177/0394632015627464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Arlian LG, Rapp CM, Stemmer BL, Morgan MS, Moore PF. Characterization of lymphocyte subtypes in scabietic skin lesions of naive and sensitized dogs. Vet Parasitol. 1997;68(4):347–358. doi: 10.1016/S0304-4017(96)01093-X. [PubMed] [CrossRef] [Google Scholar]

Stemmer BL, Arlian LG, Morgan MS, Rapp CM, Moore PF. Characterization of antigen presenting cells and T-cells in progressing scabietic skin lesions. Vet Parasitol. 1996;67(3–4):247–258. doi: 10.1016/S0304-4017(96)01038-2. [PubMed] [CrossRef] [Google Scholar]

Barrett NA, Austen KF. Innate cells and T helper 2 cell immunity in airway inflammation. Immunity. 2009;31(3):425–437. doi: 10.1016/j.immuni.2009.08.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Hahn J, Knopf J, Maueroder C, Kienhofer D, Leppkes M, Herrmann M. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation. Clin Exp Rheumatol. 2016;34(4 Suppl 98):6– 8. [PubMed] [Google Scholar]

Luo DQ, Huang MX, Liu JH, Tang W, Zhao YK, Sarkar R. Bullous scabies. Am J Trop Med Hyg. 2016;95(3):689–693. doi: 10.4269/ajtmh.16- 0273. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Dagleish MP, Ali Q, Powell RK, Butz D, Woodford MH. Fatal Sarcoptes scabiei infection of blue sheep (Pseudois nayaur) in Pakistan. J Wildl Dis. 2007;43(3):512–517. doi: 10.7589/0090-3558- 43.3.512. [PubMed] [CrossRef] [Google Scholar]

Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest. 2004;13(5):701– 708. doi: 10.1172/JCI200419655. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Loser K, Beissert S. Dendritic cells and T cells in the regulation of cutaneous immunity. Adv Dermatol. 2007;23:307–333. doi: 10.1016/j.yadr.2007.07.014. [PubMed] [CrossRef] [Google Scholar]

Arlian LG, Morgan MS, Neal JS. Extracts of scabies mites (Sarcoptidae: Sarcoptes scabiei) modulate cytokine expression by human peripheral blood mononuclear cells and dendritic cells. J Med Entomol. 2004;41(1):69–73. doi: 10.1603/0022- 2585-41.1.69. [PubMed] [CrossRef] [Google Scholar]

Downloads

Published

2022-02-16

How to Cite

Dabukke, Y. J. S. (2022). Resistant Reactions to Bothersome Skin Lession at Scabies Disease: The Systematic Review and Metaanalysis. Journal of Advanced Research in Medical and Health Science (ISSN 2208-2425), 8(2), 05-12. https://doi.org/10.53555/nnmhs.v8i1.1179