The Brain Targeted Drug Delivery System

Authors

  • Priyanka A. Bire Plot no.32, Chandrikapure layout, Nirmal Colony Road, Nara Road, Nagpur, Maharashtra Shri Sacchidanand Shikshan Santha’s College of Pharmacy, Koradi
  • Harsha V. Sonaye At-29, Shrinagar layout, Batchalar road, Wardha, 441107, Maharashtra Shri Sacchidanand Shikshan Santha’s College of Pharmacy, Koradi
  • C.A. Doifode 43-A, Ram nagar, Nagpur, 440010, Maharshtra, Shri Sacchidanand Shikshan Santha’s College of Pharmacy, Koradi
  • Preetesh C. Khekare At- Chichapura ward no.9, Saoner, Dist –Nagpur, 441107, Maharashtra, Shri Sacchidanand Shikshan Santha’s College of Pharmacy, Koradi

DOI:

https://doi.org/10.53555/nnmhs.v3i4.619

Keywords:

Brain, Barriers, Approaches, Strategies to CNS Drug delivery, Recent Advances in Brain Targeting.

Abstract

The brain is a delicate organ, and nature has very efficiently protected it. The drug accessibility to the central nervous system (CNS) is limited by the blood brain barrier (BBB). Various brain disorders are Parkinson, Alzheimer, Meningitis, Brain abscess, Epilepsy, Multiple sclerosis, Late-stage neurological trypanosomiasis (Sleeping sickness) etc. The management of brain related diseases with the present available therapeutic system is very difficult, as insufficient amount of drug reaches to the brain, due to highly lipophilic nature of blood-brain barrier (BBB). Drug delivery to the brain requires advances in drug delivery technologies. Due to the presence of the blood brain barrier only small lipid soluble drug in the circulation are delivered to the brain cells. Therefore, practical strategies are required for mediating the drug transport across blood brain barrier.

References

N.K.Jain. Controlled and Novel Drug Delivery, CBS publication, New Delhi, 1st edition reprint 100-130,147- 170, 304-352: 2008.

Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998; 70: 1781–1792.

Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet. 2002; 41:171-186. 9. Witt KA, Davis TP. CNS drug delivery: Opioid peptides and the blood-brain barrier. The AAPS Journal. 2006; 8: E76- E88.

trotta M, caputo O, Debernardi F. Preparation of solid lipid nanoparticals by a solvent emulsification-diffusion technique. International Journal of pharmacy 2003; 257: 153-60. http://dx.doi.org/10.1016/S03785173(03)00135-2

Drug delivery to the central nervous system: a review, Ambikanandan Mishra, Ganesh S., Aliasgar Shahiwal, Shrenik P. Shah, Received 16June 2003.

www.slideshare.net 25-06-2015. 5. Dm Brahmankar,Sunil B Jaiswal. Biopharmaceutics & Pharmacokinetics A Treatise, Vallabh Publications 2nd edition reprint 397-429, 495-501:2004.

N.K.Jain. Controlled and Novel Drug Delivery, CBS publication, New delhi, 1st edition reprint 100-130,147- 170, 304-352: 2008.

K. A. Witt, T. J. Gillespie, J. D. Huber, R. D. Egleton, T. P. Davis, Peptides 2001, 22, 2329.

M. S. Alavijeh, M. Chishty, M. Z. Qaiser, A. M. Palmer, NeuroRx 2005, 2, 554.

R. D. Egleton, T. P. Davis, Peptides 1997, 18, 1431.

J. F. Deeken, W. Loscher, Clin. Cancer Res. 2007, 13, 1663.

W. M. Pardridge, Pharm. Sci. Technol. Today 1999, 2, 49.

A. G. de Boer, P. J. Gaillard, Clin. Pharmacokinet. 2007, 46, 553.

Siegal, T. and zylber-Katz, E., Strategies for increasing drug delivery to the brain: focus on brain lymphoma, Clin Pharmacokinet, 41:171-186, 2002.

Arun Rasheed, I Theja, et al., CNS TARGETED DRUG DELIVERY: CURRENT PERSPECTIVES, JITPS 2010, Vol. 1 (1), 9-18.

Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37(1), 48–57 (2010).

Jones AR, Shusta EV. Blood–brain barrier transport of therapeutics via receptor- mediation. Pharm. Res. 24(9), 1759–1771 (2007).

Pardridge WM. Brain drug development and brain drug targeting. Pharm. Res. 24(9), 1729–1732 (2007).

Pardridge WM. Drug targeting to the brain. Pharm. Res. 24(9), 1733–1744 (2007).

Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin. Drug Deliv. 6(3), 227–237 (2009).

Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Deliv. Rev. 46(1–3), 247–279 (2001).

Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J. Control. Release 118(1), 38– 53 (2007).

Reddy JS, Venkateswarlu V. Novel delivery systems for drug targeting to the brain. Drugs Future 2004; 29: 63-69.

Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood brain barrier. Curr Pharm Des 2004; 10: 1355-1363.

Mishra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003; 6(2): 252-273.

Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93: 14164-14169.

Pardrige, W.M., Huwyler, J.: WO022092A1 (1998).

Tosi, G.; Costantino, L.; Ruozi, B.; Forni, F.; Randelli, M.A. Polymeric nanoparticles for the drug delivery to the central nervous system. Exp. Opin. Drug Deliv. 2008, 5 (2), 155-174.

Vyas SP, Khar RK. Targeted and controlled drug delivery. 1st ed. Chennai (India): CBS Publishers and distributers Pvt. Ltd.; 2002.

Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 2001, 53, 283-318.

Ogawara, K.; Furumoto, K.; Takakura, Y.; Hashida, M.; Higaki, K.; Kimura, T. Surface hydrophobicity of particles is not necessarily the most important determinant in their in vivo disposition after intravenous administration in rats. J. Control. Release 2001, 77, 191-198.

Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93: 14164-14169.

Pardrige, W.M., Huwyler, J.: WO022092A1 (1998).

Tosi, G.; Costantino, L.; Ruozi, B.; Forni, F.; Randelli, M.A. Polymeric nanoparticles for the drug delivery to the central nervous system. Exp. Opin. Drug Deliv. 2008, 5 (2), 155-174.

Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm. Res. 1999, 16, 751-757.

Zara, G.P.; Cavalli, R.; Bargoni, A.; Fundaro, A.; Vighetto, D.; Gasco, M.R. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target. 2002, 10, 327- 335.

Wong, H. L.; Bendayan, R.; Rauth, A. M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007, 59, 491-504.

Chattopadhyay, N.; Zastre, J.; Wong, H.L.; Wu, X.Y.; Bendayan, R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm. Res. 2008, 25, 2262-71.

Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003; 92: 1343-1355.

Jones M, Leroux J. Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48: 101-111.

Allen C, Maysinger D, Eisenberg A. Nano- engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces 1999; 16: 3-27.

Kabanov AV, Batrakova EV, Melik-Nubarov NS, et al. New classes of drug carries: micelles of poly(oxyethylene) - poly(oxypropylene block copolymersas microcontainers for drug targeting form blood in brain. J Control Release 1992; 22: 141-158.

Huwyler J, Wu D, Pardridge WM. Brain drug delivery of smallmolecules using immunoliposomes. Proc Natl Acad Sci USA 1996; 93: 14164-14169.

C. Rousselle, P. Clair, J. M. Lefauconnier, M. Kaczorek, J. M. Scherrmann, J. Temsamani, Mol. Pharmacol. 2000, 57, 679.

Alam MI, Beg S, Samad A, Baboota S, Kohlia K, Ali J, Ahuja A, Akbar M. Strategy for effective brain drug delivery: Eur J Pharm Sci 2010; 40:385-403.

Jain JP, Modia S, Dombb AJ, Kumar N. Role of polyanhydrides as localized drug carriers: J Controlled Release 2005; 103:541- 563.

Moses MA, Brem H, Langer, R. Advancing the field of drug delivery: Taking aim at cancer: Cancer cell 2003; 4 Suppl 5:337-341.

Walter KA, Cahan MA, Gur A, Tyler B, Hilton J, Colvin OM, Burger PC, Domb A, Brem H. Interstitial Taxol delivered from a biodegradable polymer implant against experimental malignant glioma: Cancer Res 1994; 54 Suppl 8:2207-2212.

Gene therapy net.com. http://www.genetherapynet.com/non- viral-vectors/lipoplexes-andpolyplexes.html.

Sawant RR, Sriraman SK, Navarro G, Biswas S, Dalvi RA, Torchilin, VP. Polyethyleneimine-lipid conjugate-based pH- sensitive micellar carrier for gene delivery: Biomaterials 2012; 33 Suppl 15:3942-51.

Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus: Proc Natl Acad Sci USA 1999; 96:91-96.

Woerly S, Petrov P, Sykova E, Roitbak T, Simonova Z, Harvey AR. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: Ultrastructural, immunohistochemical and diffusion studies: Tissue Eng 1999; 5:467-488.

Serwer LP, James CD. Challenges in drug delivery to tumors of the central nervous system: An overview of pharmacological and surgical considerations: Adv Drug Deli Rev 2012; 64 Suppl 7:590-597.

Downloads

Published

2017-04-30

How to Cite

Bire, P. A., Sonaye, H. V., Doifode, C., & Khekare, P. C. (2017). The Brain Targeted Drug Delivery System. Journal of Advanced Research in Medical and Health Science (ISSN 2208-2425), 3(4), 01-11. https://doi.org/10.53555/nnmhs.v3i4.619